Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(10)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668718

RESUMO

Creating the optimal environment for effective and long term osseointegration is a heavily researched and sought-after design criteria for orthopedic implants. A validated multimaterial finite element (FE) model was developed to replicate and understand the results of an experimental in vivo push-out osseointegration model. The FE model results closely predicted global force (at 0.5 mm) and stiffness for the 50-90% porous implants with an r2 of 0.97 and 0.98, respectively. In addition, the FE global force at 0.5 mm showed a correlation to the maximum experimental forces with an r2 of 0.90. The highest porosity implants (80-90%) showed lower stiffnesses and more equitable load sharing but also failed at lower a global force level than the low porosity implants (50-70%). The lower strength of the high porosity implants caused premature plastic deformation of the implant itself during loading as well as significant deformations in the ingrown and surrounding bone, resulting in lower overall osseointegration strength, consistent with experimental measurements. The lower porosity implants showed a balance of sufficient bony ingrowth to support osseointegration strength coupled with implant mechanical properties to circumvent significant implant plasticity and collapse under the loading conditions. Together, the experimental and finite element modeling results support an optimal porosity in the range of 60-70% for maximizing osseointegration with current structure and loading.


Assuntos
Análise de Elementos Finitos , Teste de Materiais , Osseointegração , Porosidade , Próteses e Implantes , Fenômenos Mecânicos , Animais , Metais/química , Estresse Mecânico
2.
Chem Rev ; 121(18): 11238-11304, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-33856196

RESUMO

Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Polímeros , Medicina Regenerativa , Engenharia Tecidual/métodos
3.
J Biomech Eng ; 145(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216313

RESUMO

Pelvic organ prolapse (POP) is the herniation of the pelvic organs into the vaginal space, resulting in the feeling of a bulge and organ dysfunction. Treatment of POP often involves repositioning the organs using a polypropylene mesh, which has recently been found to have relatively high rates of complications. Complications have been shown to be related to stiffness mismatches between the vagina and polypropylene, and unstable knit patterns resulting in mesh deformations with mechanical loading. To overcome these limitations, we have three-dimensional (3D)-printed a porous, monofilament membrane composed of relatively soft polycarbonate-urethane (PCU) with a stable geometry. PCU was chosen for its tunable properties as it is comprised of both hard and soft segments. The bulk mechanical properties of PCU were first characterized by testing dogbone samples, demonstrating the dependence of PCU mechanical properties on its measurement environment and the effect of print pathing. The pore dimensions and load-relative elongation response of the 3D-printed PCU membranes under monotonic tensile loading were then characterized. Finally, a fatigue study was performed on the 3D-printed membrane to evaluate durability, showing a similar fatigue resistance with a commercial synthetic mesh and hence its potential as a replacement.


Assuntos
Prolapso de Órgão Pélvico , Uretana , Feminino , Humanos , Porosidade , Polipropilenos , Teste de Materiais , Vagina
4.
Wound Repair Regen ; 29(6): 1035-1050, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34129714

RESUMO

Dermal scarring from motor vehicle accidents, severe burns, military blasts, etc. is a major problem affecting over 80 million people worldwide annually, many of whom suffer from debilitating hypertrophic scar contractures. These stiff, shrunken scars limit mobility, impact quality of life, and cost millions of dollars each year in surgical treatment and physical therapy. Current tissue engineered scaffolds have mechanical properties akin to unwounded skin, but these collagen-based scaffolds rapidly degrade over 2 months, premature to dampen contracture occurring 6-12 months after injury. This study demonstrates a tissue engineered scaffold can be manufactured from a slow-degrading viscoelastic copolymer, poly(ι-lactide-co-ε-caprolactone), with physical and mechanical characteristics to promote tissue ingrowth and support skin-grafts. Copolymers were synthesized via ring-opening polymerization. Solvent casting/particulate leaching was used to manufacture 3D porous scaffolds by mixing copolymers with particles in an organic solvent followed by casting into molds and subsequent particle leaching with water. Scaffolds characterized through SEM, micro-CT, and tensile testing confirmed the required thickness, pore size, porosity, modulus, and strength for promoting skin-graft bioincorporation and dampening fibrosis in vivo. Scaffolds were Oxygen Plasma Treatment and collagen coated to encourage cellular proliferation. Porosity ranging from 70% to 90% was investigated in a subcutaneous murine model and found to have no clinical effect on tissue ingrowth. A swine full-thickness skin wound model confirmed through histology and Computer Planimetry that scaffolds promote skin-graft survival, with or without collagen coating, with equal safety and efficacy as a commercially available tissue engineered scaffold. This study validates a scalable method to create poly(ι-lactide-co-ε-caprolactone) scaffolds with appropriate characteristics and confirms in mouse and swine wound models that the scaffolds are safe and effective at supporting skin-grafts. The results of this study have brought us closer towards developing an alternative technology that supports skin grafts with the potential to investigate long-term hypertrophic scar contractures.


Assuntos
Transplante de Pele , Engenharia Tecidual , Animais , Caproatos , Colágeno , Lactonas , Camundongos , Poliésteres , Qualidade de Vida , Suínos , Alicerces Teciduais , Cicatrização
5.
J Arthroplasty ; 35(7S): S23-S27, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32354536

RESUMO

Care for patients during COVID-19 poses challenges that require the protection of staff with recommendations that health care workers wear at minimum, an N95 mask or equivalent while performing an aerosol-generating procedure with a face shield. The United States faces shortages of personal protective equipment (PPE), and surgeons who use loupes and headlights have difficulty using these in conjunction with face shields. Most arthroplasty surgeons use surgical helmet systems, but in the current pandemic, many hospitals have delayed elective arthroplasty surgeries and the helmet systems are going unused. As a result, the authors have begun retrofitting these arthroplasty helmets to serve as PPE. The purpose of this article is to outline the conception, design, donning technique, and safety testing of these arthroplasty helmets being repurposed as PPE.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Dispositivos de Proteção da Cabeça , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/prevenção & controle , Impressão Tridimensional , Centros Médicos Acadêmicos , Aerossóis , COVID-19 , Infecções por Coronavirus/transmissão , Pessoal de Saúde , Humanos , Equipamento de Proteção Individual/normas , Pneumonia Viral/transmissão , SARS-CoV-2 , Estados Unidos
6.
Tech Orthop ; 32(3): 158-166, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29225416

RESUMO

Interbody fusion cages are routinely implanted during spinal fusion procedures to facilitate arthrodesis of a degenerated or unstable vertebral segment. Current cages are most commonly made from polyether-ether-ketone (PEEK) due to its favorable mechanical properties and imaging characteristics. However, the smooth surface of current PEEK cages may limit implant osseointegration and may inhibit successful fusion. We present the development and clinical application of the first commercially available porous PEEK fusion cage (COHERE®, Vertera, Inc., Atlanta, GA) that aims to enhance PEEK osseointegration and spinal fusion outcomes. The porous PEEK structure is extruded directly from the underlying solid and mimics the structural and mechanical properties of trabecular bone to support bone ingrowth and implant fixation. Biomechanical testing of the COHERE® device has demonstrated greater expulsion resistance versus smooth PEEK cages with ridges and greater adhesion strength of porous PEEK versus plasma-sprayed titanium coated PEEK surfaces. In vitro experiments have shown favorable cell attachment to porous PEEK and greater proliferation and mineralization of cell cultures grown on porous PEEK versus smooth PEEK and smooth titanium surfaces, suggesting that the porous structure enhances bone formation at the cellular level. At the implant level, preclinical animal studies have found comparable bone ingrowth into porous PEEK as those previously reported for porous titanium, leading to twice the fixation strength of smooth PEEK implants. Finally, two clinical case studies are presented demonstrating the effectiveness of the COHERE® device in cervical spinal fusion.

7.
Clin Orthop Relat Res ; 474(11): 2373-2383, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27154533

RESUMO

BACKGROUND: Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. QUESTIONS/PURPOSES: (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? METHODS: PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. RESULTS: Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease in ductility compared with PEEK-IM and demonstrated fatigue strength > 38 MPa at one million cycles. All PEEK-SP groups also supported greater proliferation and cell-mediated mineralization compared with smooth PEEK and Ti6Al4V. CONCLUSIONS: The PEEK-SP formulations evaluated in this study maintained favorable mechanical properties that merit further investigation into their use in load-bearing orthopaedic applications and supported greater in vitro osteogenic differentiation compared with smooth PEEK and Ti6Al4V. These results are independent of pore sizes ranging 200 µm to 508 µm. CLINICAL RELEVANCE: PEEK-SP may provide enhanced osseointegration compared with current implants while maintaining the structural integrity to be considered for several load-bearing orthopaedic applications such as spinal fusion or soft tissue repair.


Assuntos
Cetonas/química , Células-Tronco Mesenquimais/fisiologia , Procedimentos Ortopédicos/instrumentação , Osteoblastos/fisiologia , Polietilenoglicóis/química , Próteses e Implantes , Implantação de Prótese/instrumentação , Células 3T3 , Ligas , Animais , Benzofenonas , Biomarcadores/metabolismo , Proliferação de Células , Módulo de Elasticidade , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osseointegração , Osteoblastos/metabolismo , Osteogênese , Polímeros , Porosidade , Desenho de Prótese , Falha de Prótese , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo , Titânio/química , Microtomografia por Raio-X
8.
Tech Orthop ; 31(3): 181-189, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28337049

RESUMO

Three-dimensional (3-D) printing offers many potential advantages in designing and manufacturing plating systems for foot and ankle procedures that involve small, geometrically complex bony anatomy. Here, we describe the design and clinical use of a Ti-6Al-4V ELI bone plate (FastForward™ Bone Tether Plate, MedShape, Inc., Atlanta, GA) manufactured through 3-D printing processes. The plate protects the second metatarsal when tethering suture tape between the first and second metatarsals and is a part of a new procedure that corrects hallux valgus (bunion) deformities without relying on doing an osteotomy or fusion procedure. The surgical technique and two clinical cases describing the use of this procedure with the 3-D printed bone plate are presented within.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38469869

RESUMO

There is a significant need for models that can capture the mechanical behavior of complex porous lattice architectures produced by 3D printing. The free boundary effect is an experimentally observed behavior of lattice architectures including the gyroid triply periodic minimal surface where the number of unit cell repeats has been shown to influence the mechanical performance of the lattice. The purpose of this study is to use finite element modeling to investigate how architecture porosity, unit cell size, and sample size dictate mechanical behavior. Samples with varying porosity and increasing number of unit cells (relative to sample size) were modeled under an axial compressive load to determine the effective modulus. The finite element model captured the free boundary effect and captured experimental trends in the structure's modulus. The findings of this study show that samples with higher porosity are more susceptible to the impact of the free boundary effect and in some samples, the modulus can be 20% smaller in samples with smaller numbers of unit cell repeats within a given sample boundary. The outcomes from this study provide a deeper understanding of the gyroid structure and the implications of design choices including porosity, unit cell size, and overall sample size.

10.
Clin Biomech (Bristol, Avon) ; 111: 106135, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948989

RESUMO

BACKGROUND: The purpose of this study is to develop a simple and reproducible bending model that is compatible with a wide range of orthopaedic fixation devices and 3D printed spacers. METHODS: A robust 4-point bending model was constructed by securing sawbones blocks with different orthopaedic fixation device constructs. Stress strain curves derived from a fundamental mechanics model were used to assess the effect of bone density, type of hardware (staple vs intramedullary beam), the use of dynamic compression, orientation of staples (dorsal vs plantar), and the use of 3D printed titanium spacers. FINDINGS: The high throughput 4-point bending model is simple enough that the methods can be easily repeated to assess a wide range of fixation methods, while complex enough to provide clinically relevant information. INTERPRETATIONS: It is recommended that this model is used to assess a large initial set of fixation methods in direct and straightforward comparisons.


Assuntos
Fixação Intramedular de Fraturas , Ortopedia , Humanos , Fixação Interna de Fraturas , Placas Ósseas , Fenômenos Biomecânicos
11.
Data Brief ; 49: 109396, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600123

RESUMO

Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or "porosity" of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1].

12.
JOR Spine ; 6(3): e1268, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780834

RESUMO

Background: The use of intervertebral cages within the interbody fusion setting is ubiquitous. Synthetic cages are predominantly manufactured using materials such as Ti and PEEK. With the advent of additive manufacturing techniques, it is now possible to spatially vary complex 3D geometric features within interbody devices, enabling the devices to match the stiffness of native tissue and better promote bony integration. To date, the impact of surface porosity of additively manufactured Ti interbody cages on fusion outcomes has not been investigated. Thus, the objective of this work was to determine the effect of implant endplate surface and implant body architecture of additive manufactured lattice structure titanium interbody cages on bony fusion. Methods: Biomechanical, microcomputed tomography, static and dynamic histomorphometry, and histopathology analyses were performed on twelve functional spine units obtained from six sheep randomly allocated to body lattice or surface lattice groups. Results: Nondestructive kinematic testing, microcomputed tomography analysis, and histomorphometry analyses of the functional spine units revealed positive fusion outcomes in both groups. These data revealed similar results in both groups, with the exception of bone-in-contact analysis, which revealed significantly improved bone-in-contact values in the body lattice group compared to the surface lattice group. Conclusion: Both additively manufactured porous titanium cage designs resulted in increased fusion outcomes as compared to PEEK interbody cage designs as illustrated by the nondestructive kinematic motion testing, static and dynamic histomorphometry, microcomputed tomography, and histopathology analyses. While both cages provided for similar functional outcomes, these data suggest boney contact with an interbody cage may be impacted by the nature of implant porosity adjacent to the vertebral endplates.

13.
J Mech Behav Biomed Mater ; 130: 105208, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395449

RESUMO

3D printing is a critical method for manufacturing metallic implants as it enables direct fabrication of intricate geometries and porous structures inaccessible to other manufacturing methods. Some common 3D printed porous structures are strut based (e.g. octet truss), triply periodic minimal surfaces (TPMS) (e.g. gyroid) or randomized (e.g. stochastic). When designed to be on the surface of bone interfacing implants, the surface porous region impacts short-term adhesion and friction, ultimately affecting implant stability prior to and during long-term osseointegration. In many orthopedic procedures, expulsion resistance is an essential design requirement, to prevent the risk of the implant migrating from the implantation site. While expulsion tests are universal, they are a poorly understood method to examine the bone-implant interface in determining the performance of an orthopedic implant. In this foundational study, we examine the expulsion behavior of metallic samples in synthetic Sawbone with systematically varied surface topography at increasing applied normal forces. The applied normal force and size of the sample were shown to have the strongest influence on expulsion force followed by surface structure. Compared to a polished sample control, certain 3D printed surface structures are up to 10x more expulsion resistant and should be considered in implants where prevention of implant migration before and during osseointegration is critical. Nonlinear relationships were discovered that reveal "crossover" in expulsion resistance as a function of applied load revealing that the ranking of the relative expulsion resistance of different samples can depend on the normal force selected. This new fundamental understanding has broad implications on both the design and potential standardized regulatory testing of textured orthopedic implants with tailored topologies.


Assuntos
Próteses e Implantes , Titânio , Interface Osso-Implante , Osseointegração , Porosidade , Impressão Tridimensional , Propriedades de Superfície , Titânio/química
14.
ACS Appl Mater Interfaces ; 14(34): 38436-38447, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977091

RESUMO

Poly(propylene fumarate) star polymers photochemically 3D printed with degradable thiol cross-linkers yielded highly tunable biodegradable polymeric materials. Tailoring the alkene:thiol ratio (5:1, 10:1, 20:1 and 30:1) and thus the cross-link density within the PPF star systems yielded a wide variation of both the mechanical and degradation properties of the printed materials. Fundamental trends were established between the polymer network cross-link density, glass transition temperature, and tensile and thermomechanical properties of the materials. The tensile properties of the PPF star-based systems were compared to commercial state-of-the-art non-degradable polymer resins. The thiolene-cross-linked materials are fully degradable and possess properties over a wide range of mechanical properties relevant to regenerative medicine applications.

15.
Materials (Basel) ; 15(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35888273

RESUMO

Corrosion of medical implants is a possible failure mode via induced local inflammatory effects, systemic deposition and corrosion related mechanical failure. Cyclic potentiodynamic polarisation (CPP) testing was utilized to evaluate the effect of increased porosity (60% and 80%) and decreased wall thickness in gyroid lattice structures on the electrochemical behaviour of LPBF Ti6Al4V structures. The use of CPP allowed for the landmarks of breakdown potential, resting potential and vertex potential to be analysed, as well as facilitating the construction of Tafel plots and qualitative Goldberg analysis. The results indicated that 60% gyroid samples were most susceptible to the onset of pitting corrosion when compared to 80% gyroid and solid samples. This was shown through decreased breakdown and vertex potentials and were found to correlate to increased lattice surface area to void volume ratio. Tafel plots indicated that despite the earlier onset of pitting corrosion, both gyroid test groups displayed lower rates of corrosion per year, indicating a lower severity of corrosion. This study highlighted inherent tradeoffs between lattice optimisation and corrosion behaviour with a potential parabolic link between void volume, surface area and corrosion being identified. This potential link is supported by 60% gyroid samples having the lowest breakdown potentials, but investigation into other porosity ranges is suggested to support the hypothesis. All 3D printed materials studied here showed breakdown potentials higher than ASTM F2129's suggestion of 800 mV for evaluation within the physiological environment, indicating that under static conditions pitting and crevice corrosion should not initiate within the body.

16.
Sci Total Environ ; 814: 152460, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34973311

RESUMO

Microplastics (MPs) have become an emerging new pollutant of rising concern due to the exponential growth of plastics in consumer products. Most MP and nanoplastic pollution comes from the fragmentation of plastics through mechanical stress, chemical reactions and biological degradation that occurs during use and after disposal. Models predicting the generation and behavior of MP in the environment are developing, however there is lack of data to predict the rates of MP generation as a function of the abrasive forces. A method to deliver scalable, quantitative release rates of MPs during mechanical stress throughout a plastic's life cycle (e.g., sanding, chewing, river and ocean disposal) is described. A custom abrasion machine was built with features to provide data to calculate power input. The generation rate of MPs through abrasion was tested for the following 3D printed polymers: polylactic acid (PLA), polycarbonate (PC), thermoplastic polyurethane 85A (TPU), polyethylene glycol terephthalate (PETG), high-impact polystyrene (HIPS), and nylon. Each material underwent tensile strength material tests to identify which mechanical properties drive their abrasion rate. Abrasion rate was not observed to correlate to macroscopic mechanic properties. Results indicate that the order of abrasion from most to least were HIPS, nylon, PC, PLA, PETG, and then TPU. This study will help comprehend and provide data to understand generation rates of MPs from consumer plastic products and macro-plastic debris. This will be instrumental in helping to better understand the release of MPs and nanoplastics into the environment and to provide data for fate and transport models, especially in order to predict the amount of plastic entering water systems. MP generation rates and power inputs can be correlated with each plastic's use to inform which release the most MPs and how to better change these products in order to reduce pollution in water sources.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Poluição Ambiental , Plásticos , Polímeros , Poluentes Químicos da Água/análise
17.
Foot Ankle Int ; 43(6): 750-761, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35209733

RESUMO

BACKGROUND: Treating critically sized defects (CSDs) of bone remains a significant challenge in foot and ankle surgery. Custom 3D-printed implants are being offered to a small but growing subset of patients as a salvage procedure in lieu of traditional alternates such as structural allografts after the patient has failed prior procedures. The long-term outcomes of 3D-printed implants are still unknown and understudied because of the limited number of cases and short follow-up durations. The purpose of this study was to evaluate the outcomes of patients who received custom 3D-printed implants to treat CSDs of the foot and ankle in an attempt to aid surgeons in selecting appropriate surgical candidates. METHODS: This was a retrospective study to assess surgical outcomes of patients who underwent implantation of a custom 3D-printed implant made with medical-grade titanium alloy powder (Ti-6Al-4V) to treat CSDs of the foot and ankle between June 1, 2014, and September 30, 2019. All patients had failed previous nonoperative or operative management before proceeding with treatment with a custom 3D-printed implant. Univariate and multivariate odds ratios (ORs) of a secondary surgery and implant removal were calculated for perioperative variables. RESULTS: There were 39 cases of patients who received a custom 3D-printed implant with at least 1 year of follow-up. The mean follow-up time was 27.0 (12-74) months. Thirteen of 39 cases (33.3%) required a secondary surgery and 10 of 39 (25.6%) required removal of the implant because of septic nonunion (6/10) or aseptic nonunion (4/10). The mean time to secondary surgery was 10 months (1-22). Multivariate logistic regression revealed that patients with neuropathy were more likely to require a secondary surgery with an OR of 5.76 (P = .03). CONCLUSION: This study demonstrated that 74% of patients who received a custom 3D-printed implant for CSDs did not require as subsequent surgery (minimum of 1-year follow-up). Neuropathy was significantly associated with the need for a secondary surgery. This is the largest series to date demonstrating the efficacy of 3D-printed custom titanium implants. As the number of cases using patient-specific 3D-printed titanium implant increases, larger cohorts of patients should be studied to identify other high-risk groups and possible interventions to improve surgical outcomes. LEVEL OF EVIDENCE: Level IV, case series.


Assuntos
Tornozelo , Titânio , Humanos , Porosidade , Impressão Tridimensional , Estudos Retrospectivos
18.
Int J Comput Assist Radiol Surg ; 17(3): 541-551, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099684

RESUMO

PURPOSE: Reconstructive surgeries to treat a number of musculoskeletal conditions, from arthritis to severe trauma, involve implant placement and reconstructive planning components. Anatomically matched 3D-printed implants are becoming increasingly patient-specific; however, the preoperative planning and design process requires several hours of manual effort from highly trained engineers and clinicians. Our work mitigates this problem by proposing algorithms for the automatic re-alignment of unhealthy anatomies, leading to more efficient, affordable, and scalable treatment solutions. METHODS: Our solution combines global alignment techniques such as iterative closest points with novel joint space refinement algorithms. The latter is achieved by a low-dimensional characterization of the joint space, computed from the distribution of the distance between adjacent points in a joint. RESULTS: Experimental validation is presented on real clinical data from human subjects. Compared with ground truth healthy anatomies, our algorithms can reduce misalignment errors by 22% in translation and 19% in rotation for the full foot-and-ankle and 37% in translation and 39% in rotation for the hindfoot only, achieving a performance comparable to expert technicians. CONCLUSION: Our methods and histogram-based metric allow for automatic and unsupervised alignment of anatomies along with techniques for global alignment of complex arrangements such as the foot-and-ankle system, a major step toward a fully automated and data-driven re-positioning, designing, and diagnosing tool.


Assuntos
Procedimentos de Cirurgia Plástica , Tomografia Computadorizada por Raios X , Algoritmos , Automação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
19.
Polymer (Guildf) ; 52(21): 4920-4927, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21966028

RESUMO

Poly(ß-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation.

20.
J Mech Behav Biomed Mater ; 121: 104650, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166872

RESUMO

The recent growth of polymer 3D-printing has brought innovation to the medical implant field. Implants with complex porous structures can be fabricated by printing to tune mechanical behavior and enable diffusion, consequently improving integration with tissues in the human body. Poly(L-lactide-co-ε-caprolactone) (PLCL) is a 3D-printable polymer that possess a wide range of possible mechanical properties depending on its monomer composition. It is often used in biomedical applications requiring degradability. In this study, we explore 1) the effect of annealing 3D-printed PLCL and 2) the degradation profile of both annealed and unannealed 3D-printed PLCL scaffolds. The degraded samples were characterized for its molecular weight, mass loss, microstructure, and mechanical properties. By annealing the 3D-printed PLCL, we reveal the structure-property relationship of PLCL. Crystallization was found to be a crucial factor in the resulting mechanical properties, increasing stiffness significantly. The subsequent degradation study revealed that there was no significant difference brought about by pre-annealing the scaffolds. The scaffolds were found to maintain their mechanical properties until up to 8 weeks, at which point the scaffolds reached a critical molecular weight and lost their mechanical integrity.


Assuntos
Poliésteres , Polímeros , Caproatos , Dioxanos , Humanos , Lactonas , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA