Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 51(2): 258-271.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350176

RESUMO

Macrophage plasticity is critical for normal tissue repair to ensure transition from the inflammatory to the proliferative phase of healing. We examined macrophages isolated from wounds of patients afflicted with diabetes and of healthy controls and found differential expression of the methyltransferase Setdb2. Myeloid-specific deletion of Setdb2 impaired the transition of macrophages from an inflammatory phenotype to a reparative one in normal wound healing. Mechanistically, Setdb2 trimethylated histone 3 at NF-κB binding sites on inflammatory cytokine gene promoters to suppress transcription. Setdb2 expression in wound macrophages was regulated by interferon (IFN) ß, and under diabetic conditions, this IFNß-Setdb2 axis was impaired, leading to a persistent inflammatory macrophage phenotype in diabetic wounds. Setdb2 regulated the expression of xanthine oxidase and thereby the uric acid (UA) pathway of purine catabolism in macrophages, and pharmacologic targeting of Setdb2 or the UA pathway improved healing. Thus, Setdb2 regulates macrophage plasticity during normal and pathologic wound repair and is a target for therapeutic manipulation.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Macrófagos/fisiologia , Proteínas Nucleares/metabolismo , Idoso , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Fenótipo , Ácido Úrico/metabolismo , Cicatrização
2.
J Immunol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905107

RESUMO

Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.

3.
Circulation ; 149(4): e232-e253, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38095068

RESUMO

Despite the known higher risk of cardiovascular disease in individuals with type 2 diabetes, the pathophysiology and optimal management of diabetic foot ulcers (DFUs), a leading complication associated with diabetes, is complex and continues to evolve. Complications of type 2 diabetes, such as DFUs, are a major cause of morbidity and mortality and the leading cause of major lower extremity amputation in the United States. There has recently been a strong focus on the prevention and early treatment of DFUs, leading to the development of multidisciplinary diabetic wound and amputation prevention clinics across the country. Mounting evidence has shown that, despite these efforts, amputations associated with DFUs continue to increase. Furthermore, due to increasing patient complexity of management secondary to comorbid conditions, such as cardiovascular disease, the management of peripheral artery disease associated with DFUs has become increasingly difficult, and care delivery is often episodic and fragmented. Although structured, process-specific approaches exist at individual institutions for the management of DFUs in the cardiovascular patient population, there is insufficient awareness of these principles in the general medicine communities. Furthermore, there is growing interest in better understanding the mechanistic underpinnings of DFUs to better define personalized medicine to improve outcomes. The goals of this scientific statement are to provide salient background information on the complex pathogenesis and current management of DFUs in cardiovascular patients, to guide therapeutic and preventive strategies and future research directions, and to inform public policy makers on health disparities and other barriers to improving and advancing care in this expanding patient population.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Pé Diabético , Humanos , Estados Unidos/epidemiologia , Pé Diabético/diagnóstico , Pé Diabético/epidemiologia , Pé Diabético/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , American Heart Association
4.
Blood ; 141(7): 725-742, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36493338

RESUMO

Coronavirus-associated coagulopathy (CAC) is a morbid and lethal sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. CAC results from a perturbed balance between coagulation and fibrinolysis and occurs in conjunction with exaggerated activation of monocytes/macrophages (MO/Mφs), and the mechanisms that collectively govern this phenotype seen in CAC remain unclear. Here, using experimental models that use the murine betacoronavirus MHVA59, a well-established model of SARS-CoV-2 infection, we identify that the histone methyltransferase mixed lineage leukemia 1 (MLL1/KMT2A) is an important regulator of MO/Mφ expression of procoagulant and profibrinolytic factors such as tissue factor (F3; TF), urokinase (PLAU), and urokinase receptor (PLAUR) (herein, "coagulopathy-related factors") in noninfected and infected cells. We show that MLL1 concurrently promotes the expression of the proinflammatory cytokines while suppressing the expression of interferon alfa (IFN-α), a well-known inducer of TF and PLAUR. Using in vitro models, we identify MLL1-dependent NF-κB/RelA-mediated transcription of these coagulation-related factors and identify a context-dependent, MLL1-independent role for RelA in the expression of these factors in vivo. As functional correlates for these findings, we demonstrate that the inflammatory, procoagulant, and profibrinolytic phenotypes seen in vivo after coronavirus infection were MLL1-dependent despite blunted Ifna induction in MO/Mφs. Finally, in an analysis of SARS-CoV-2 positive human samples, we identify differential upregulation of MLL1 and coagulopathy-related factor expression and activity in CD14+ MO/Mφs relative to noninfected and healthy controls. We also observed elevated plasma PLAU and TF activity in COVID-positive samples. Collectively, these findings highlight an important role for MO/Mφ MLL1 in promoting CAC and inflammation.


Assuntos
COVID-19 , Histona-Lisina N-Metiltransferase , Animais , Humanos , Camundongos , COVID-19/complicações , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , SARS-CoV-2/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
5.
Ann Surg ; 279(2): 231-239, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916404

RESUMO

OBJECTIVE: To create a blueprint for surgical department leaders, academic institutions, and funding agencies to optimally support surgeon-scientists. BACKGROUND: Scientific contributions by surgeons have been transformative across many medical disciplines. Surgeon-scientists provide a distinct approach and mindset toward key scientific questions. However, lack of institutional support, pressure for increased clinical productivity, and growing administrative burden are major challenges for the surgeon-scientist, as is the time-consuming nature of surgical training and practice. METHODS: An American Surgical Association Research Sustainability Task Force was created to outline a blueprint for sustainable science in surgery. Leaders from top NIH-sponsored departments of surgery engaged in video and in-person meetings between January and April 2023. A strength, weakness, opportunities, threats analysis was performed, and workgroups focused on the roles of surgeons, the department and institutions, and funding agencies. RESULTS: Taskforce recommendations: (1) SURGEONS: Growth mindset : identifying research focus, long-term planning, patience/tenacity, team science, collaborations with disparate experts; Skill set : align skills and research, fill critical skill gaps, develop team leadership skills; DEPARTMENT OF SURGERY (DOS): (2) MENTORSHIP: Chair : mentor-mentee matching/regular meetings/accountability, review of junior faculty progress, mentorship training requirement, recognition of mentorship (eg, relative value unit equivalent, awards; Mentor: dedicated time, relevant scientific expertise, extramural funding, experience and/or trained as mentor, trusted advisor; Mentee : enthusiastic/eager, proactive, open to feedback, clear about goals; (3) FINANCIAL SUSTAINABILITY: diversification of research portfolio, identification of matching funding sources, departmental resource awards (eg, T-/P-grants), leveraging of institutional resources, negotiation of formalized/formulaic funds flow investment from academic medical center toward science, philanthropy; (4) STRUCTURAL/STRATEGIC SUPPORT: Structural: grants administrative support, biostats/bioinformatics support, clinical trial and research support, regulatory support, shared departmental laboratory space/equipment; Strategic: hiring diverse surgeon-scientist/scientists faculty across DOS, strategic faculty retention/ recruitment, philanthropy, career development support, progress tracking, grant writing support, DOS-wide research meetings, regular DOS strategic research planning; (5) COMMUNITY AND CULTURE: Community: right mix of faculty, connection surgeon with broad scientific community; Culture: building research infrastructure, financial support for research, projecting importance of research (awards, grand rounds, shoutouts); (6) THE ROLE OF INSTITUTIONS: Foundation: research space co-location, flexible start-up packages, courses/mock study section, awards, diverse institutional mentorship teams; Nurture: institutional infrastructure, funding (eg, endowed chairs), promotion friendly toward surgeon-scientists, surgeon-scientists in institutional leadership positions; Expectations: RVU target relief, salary gap funding, competitive starting salaries, longitudinal salary strategy; (7) THE ROLE OF FUNDING AGENCIES: change surgeon research training paradigm, offer alternate awards to K-awards, increasing salary cap to reflect market reality, time extension for surgeon early-stage investigator status, surgeon representation on study section, focused award strategies for professional societies/foundations. CONCLUSIONS: Authentic recommitment from surgeon leaders with intentional and ambitious actions from institutions, corporations, funders, and society is essential in order to reap the essential benefits of surgeon-scientists toward advancements of science.


Assuntos
Pesquisa Biomédica , Cirurgiões , Humanos , Estados Unidos , Mentores , Docentes , Centros Médicos Acadêmicos , Mobilidade Ocupacional , National Institutes of Health (U.S.)
6.
Genome Res ; 31(12): 2258-2275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815310

RESUMO

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34479991

RESUMO

COVID-19 induces a robust, extended inflammatory "cytokine storm" that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNß directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNß reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNß/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.


Assuntos
Coronavirus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/virologia , Macrófagos/metabolismo , Animais , COVID-19/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais
8.
Semin Cell Dev Biol ; 119: 111-118, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34183242

RESUMO

Non-healing wounds in Type 2 Diabetes (T2D) patients represent the most common cause of amputation in the US, with an associated 5-year mortality of nearly 50%. Our lab has examined tissue from both T2D murine models and human wounds in order to explore mechanisms contributing to impaired wound healing. Current published data in the field point to macrophage function serving a pivotal role in orchestrating appropriate wound healing. Wound macrophages in mice and patients with T2D are characterized by a persistent inflammatory state; however, the mechanisms that control this persistent inflammatory state are unknown. Current literature demonstrates that gene regulation through histone modifications, DNA modifications, and microRNA can influence macrophage plasticity during wound healing. Further, accumulating studies reveal the importance of cells such as adipocytes, infiltrating immune cells (PMNs and T cells), and keratinocytes secrete factors that may help drive macrophage polarization. This review will examine the role of macrophages in the wound healing process, along with their function and interactions with other cells, and how it is perturbed in T2D. We also explore epigenetic factors that regulate macrophage polarization in wounds, while highlighting the emerging role of other cell types that may influence macrophage phenotype following tissue injury.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Cicatrização/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
9.
Ann Surg ; 278(2): e349-e359, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111847

RESUMO

OBJECTIVE: Our objective was to identify macrophage subpopulations and gene signatures associated with regenerative or fibrotic healing across different musculoskeletal injury types. BACKGROUND: Subpopulations of macrophages are hypothesized to fine tune the immune response after damage, promoting either normal regenerative, or aberrant fibrotic healing. METHODS: Mouse single-cell RNA sequencing data before and after injury were assembled from models of musculoskeletal injury, including regenerative and fibrotic mouse volumetric muscle loss (VML), regenerative digit tip amputation, and fibrotic heterotopic ossification. R packages Harmony , MacSpectrum , and Seurat were used for data integration, analysis, and visualizations. RESULTS: There was a substantial overlap between macrophages from the regenerative VML (2 mm injury) and regenerative bone models, as well as a separate overlap between the fibrotic VML (3 mm injury) and fibrotic bone (heterotopic ossification) models. We identified 2 fibrotic-like (FL 1 and FL 2) along with 3 regenerative-like (RL 1, RL 2, and RL 3) subpopulations of macrophages, each of which was transcriptionally distinct. We found that regenerative and fibrotic conditions had similar compositions of proinflammatory and anti-inflammatory macrophages, suggesting that macrophage polarization state did not correlate with healing outcomes. Receptor/ligand analysis of macrophage-to-mesenchymal progenitor cell crosstalk showed enhanced transforming growth factor ß in fibrotic conditions and enhanced platelet-derived growth factor signaling in regenerative conditions. CONCLUSION: Characterization of macrophage subtypes could be used to predict fibrotic responses following injury and provide a therapeutic target to tune the healing microenvironment towards more regenerative conditions.


Assuntos
Músculo Esquelético , Ossificação Heterotópica , Camundongos , Animais , Macrófagos , Cicatrização/fisiologia , Fator de Crescimento Derivado de Plaquetas
10.
Ann Surg ; 278(3): 426-440, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37325923

RESUMO

OBJECTIVE: To determine macrophage-specific alterations in epigenetic enzyme function contributing to the development of abdominal aortic aneurysms (AAAs). BACKGROUND: AAA is a life-threatening disease, characterized by pathologic vascular remodeling driven by an imbalance of matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). Identifying mechanisms regulating macrophage-mediated extracellular matrix degradation is of critical importance to developing novel therapies. METHODS: The role of SET Domain Bifurcated Histone Lysine Methyltransferase 2 (SETDB2) in AAA formation was examined in human aortic tissue samples by single-cell RNA sequencing and in a myeloid-specific SETDB2 deficient murine model induced by challenging mice with a combination of a high-fat diet and angiotensin II. RESULTS: Single-cell RNA sequencing of human AAA tissues identified SETDB2 was upregulated in aortic monocyte/macrophages and murine AAA models compared with controls. Mechanistically, interferon-ß regulates SETDB2 expression through Janus kinase/signal transducer and activator of transcription signaling, which trimethylates histone 3 lysine 9 on the TIMP1-3 gene promoters thereby suppressing TIMP1-3 transcription and leading to unregulated matrix metalloproteinase activity. Macrophage-specific knockout of SETDB2 ( Setdb2f/fLyz2Cre+ ) protected mice from AAA formation with suppression of vascular inflammation, macrophage infiltration, and elastin fragmentation. Genetic depletion of SETDB2 prevented AAA development due to the removal of the repressive histone 3 lysine 9 trimethylation mark on the TIMP1-3 gene promoter resulting in increased TIMP expression, decreased protease activity, and preserved aortic architecture. Lastly, inhibition of the Janus kinase/signal transducer and activator of the transcription pathway with an FDA-approved inhibitor, Tofacitinib, limited SETDB2 expression in aortic macrophages. CONCLUSIONS: These findings identify SETDB2 as a critical regulator of macrophage-mediated protease activity in AAAs and identify SETDB2 as a mechanistic target for the management of AAAs.


Assuntos
Aneurisma da Aorta Abdominal , Histonas , Inibidor Tecidual de Metaloproteinase-3 , Animais , Humanos , Camundongos , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Histona Metiltransferases/metabolismo , Histonas/efeitos adversos , Histonas/metabolismo , Janus Quinases/efeitos adversos , Janus Quinases/metabolismo , Lisina/efeitos adversos , Lisina/metabolismo , Metaloproteinases da Matriz/efeitos adversos , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor Tecidual de Metaloproteinase-3/genética
11.
J Pediatr Psychol ; 48(5): 490-501, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36888882

RESUMO

OBJECTIVE: A central part of family adjustment to a new diagnosis of type 1 diabetes (T1D) is integrating T1D management into the child's school/daycare. This may be particularly challenging for young children who rely on adults for their diabetes management. This study aimed to describe parent experiences with school/daycare during the first 1.5 years following a young child's T1D diagnosis. METHODS: As part of a randomized controlled trial of a behavioral intervention, 157 parents of young children with new-onset (<2 months) T1D reported on their child's school/daycare experience at baseline and at 9- and 15-month post-randomization. We used a mixed-methods design to describe and contextualize parents' experiences with school/daycare. Qualitative data were collected via open-ended responses, and quantitative data were collected from a demographic/medical from. RESULTS: While most children were enrolled in school/daycare at all time points, over 50% of parents endorsed that T1D affected their child's enrollment, rejection, or removal from school/daycare at 9 or 15 months. We generated five themes related to parents' school/daycare experiences: Child factors, Parent factors, School/Daycare factors, Cooperation between Parents and Staff, and Socio-historical factors. Parents of younger children and those with lower subjective socioeconomic status were significantly more likely to endorse challenges with school/daycare enrollment. CONCLUSIONS: School/daycare settings present challenges for parents of young children with T1D. Changes may need to occur across contexts to support early childhood education, including advocacy resources for parents to navigate school policies, increased training for school staff, and healthcare team outreach initiatives to parents and schools.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Criança , Pré-Escolar , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Pais , Instituições Acadêmicas , Classe Social , Estudantes
12.
J Pediatr Psychol ; 48(7): 605-613, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37344161

RESUMO

OBJECTIVE: Parents of young children with new-onset type 1 diabetes (T1D) often experience significant distress and struggle with T1D management during a challenging developmental stage. The First STEPS (Study of Type 1 in Early childhood and Parenting Support) trial evaluated a stepped-care behavioral intervention comprising increasingly intensive intervention steps (peer parent coach, cognitive-behavioral counseling, consultations with diabetes educator and psychologist) based on need. The intervention improved parental depressive symptoms compared to usual care. Subsequently, we examined parent satisfaction with the intervention to guide potential implementation and refinement for future trials. METHODS: Participants were 157 parents of young children newly diagnosed with T1D. At 9 months post randomization, n = 153 completed satisfaction questionnaires and n = 17 completed qualitative interviews. Satisfaction ratings about trial procedures and each intervention step were summarized. We used thematic analysis with the interview transcripts to generate themes related to participants' experiences in the trial overall and intervention specifically. We explored differences in themes between participants who did versus did not respond to the intervention and among those who experienced different intervention steps. RESULTS: Most participants in both arms rated study participation and methods positively (>95%), and those completing interviews described high satisfaction with study procedures overall, retention incentives, and contact with study staff. Intervention participants' satisfaction ratings were high across steps. Two qualitative themes reflected satisfaction with the intervention enhancing self-efficacy and social support. CONCLUSIONS: High satisfaction suggests implementing a stepped-care behavioral intervention as part of routine clinical care following T1D diagnosis would be well received.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/psicologia , Terapia Comportamental , Pais/psicologia , Poder Familiar , Satisfação Pessoal
13.
Clin Infect Dis ; 74(2): 288-293, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33893491

RESUMO

BACKGROUND: Few studies have assessed the seroprevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among healthcare workers (HCWs) in Africa. We report findings from a survey among HCWs in 3 counties in Kenya. METHODS: We recruited 684 HCWs from Kilifi (rural), Busia (rural), and Nairobi (urban) counties. The serosurvey was conducted between 30 July and 4 December 2020. We tested for immunoglobulin G antibodies to SARS-CoV-2 spike protein, using enzyme-linked immunosorbent assay. Assay sensitivity and specificity were 92.7 (95% CI, 87.9-96.1) and 99.0% (95% CI, 98.1-99.5), respectively. We adjusted prevalence estimates, using bayesian modeling to account for assay performance. RESULTS: The crude overall seroprevalence was 19.7% (135 of 684). After adjustment for assay performance, seroprevalence was 20.8% (95% credible interval, 17.5%-24.4%). Seroprevalence varied significantly (P < .001) by site: 43.8% (95% credible interval, 35.8%-52.2%) in Nairobi, 12.6% (8.8%-17.1%) in Busia and 11.5% (7.2%-17.6%) in Kilifi. In a multivariable model controlling for age, sex, and site, professional cadre was not associated with differences in seroprevalence. CONCLUSION: These initial data demonstrate a high seroprevalence of antibodies to SARS-CoV-2 among HCWs in Kenya. There was significant variation in seroprevalence by region, but not by cadre.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Teorema de Bayes , Pessoal de Saúde , Humanos , Quênia/epidemiologia , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
14.
Emerg Infect Dis ; 28(3): 734-738, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202536

RESUMO

We explored the association of Ebola virus antibody seropositivity and concentration with potential risk factors for infection. Among 1,282 adults and children from a community affected by the 2014-2016 Ebola outbreak in Sierra Leone, 8% were seropositive for virus antibodies but never experienced disease symptoms. Antibody concentration increased with age.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Adulto , Criança , Surtos de Doenças , Glicoproteínas , Doença pelo Vírus Ebola/epidemiologia , Humanos , Imunoglobulina G , Estudos Soroepidemiológicos , Serra Leoa/epidemiologia
15.
Ann Surg ; 276(3): 511-521, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762613

RESUMO

OBJECTIVE: To determine cell-specific gene expression profiles that contribute to development of abdominal aortic aneurysms (AAAs). BACKGROUND: AAAs represent the most common pathological aortic dilation leading to the fatal consequence of aortic rupture. Both immune and structural cells contribute to aortic degeneration, however, gene specific alterations in these cellular subsets are poorly understood. METHODS: We performed single-cell RNA sequencing (scRNA-seq) analysis of AAAs and control tissues. AAA-related changes were examined by comparing gene expression profiles as well as detailed receptor-ligand interactions. An integrative analysis of scRNA-seq data with large genome-wide association study data was conducted to identify genes critical for AAA development. RESULTS: Using scRNA-seq we provide the first comprehensive characterization of the cellular landscape in human AAA tissues. Unbiased clustering analysis of transcriptional profiles identified seventeen clusters representing 8 cell lineages. For immune cells, clustering analysis identified 4 T-cell and 5 monocyte/macrophage subpopulations, with distinct transcriptional profiles in AAAs compared to controls. Gene enrichment analysis on immune subsets identified multiple pathways only expressed in AAA tissue, including those involved in mitochondrial dysfunction, proliferation, and cytokine secretion. Moreover, receptor-ligand analysis defined robust interactions between vascular smooth muscle cells and myeloid populations in AAA tissues. Lastly, integrated analysis of scRNA-seq data with genome-wide association study studies determined that vascular smooth muscle cell expression of SORT1 is critical for maintaining normal aortic wall function. CONCLUSIONS: Here we provide the first comprehensive evaluation of single-cell composition of the abdominal aortic wall and reveal how the gene expression landscape is altered in human AAAs.


Assuntos
Aneurisma da Aorta Abdominal , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Estudo de Associação Genômica Ampla , Humanos , Ligantes , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transcriptoma
16.
Immunol Cell Biol ; 100(7): 562-579, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608955

RESUMO

Neonatal CD4+ T cells have reduced or delayed T-cell receptor (TCR) signaling responses compared with adult cells, but the mechanisms underlying this are poorly understood. This study tested the hypothesis that human neonatal naïve CD4+ TCR signaling and activation deficits are related to differences in H3K4me3 patterning and chromatin accessibility. Following initiation of TCR signaling using anti-CD3/anti-CD28 beads, adult naïve CD4+ T cells demonstrated increased CD69, phospho-CD3ε and interleukin (IL)-2, tumor necrosis factor-α (TNF-α), interferon-γ and IL-17A compared with neonatal cells. By contrast, following TCR-independent activation using phorbol myristate acetate (PMA)/ionomycin, neonatal cells demonstrated increased expression of CD69, IL-2 and TNF-α and equivalent phospho-ERK compared with adult cells. H3K4me3 chromatin immunoprecipitation-sequencing (ChIP-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were performed on separate cohorts of naïve CD4+ T cells from term neonates and adults, and RNA-seq data from neonatal and adult naïve CD4+ T cells were obtained from the Blueprint Consortium. Adult cells demonstrated overall increased chromatin accessibility and a higher proportion of H3K4me3 sites associated with open chromatin and active gene transcription compared with neonatal cells. Adult cells demonstrated increased mRNA expression of the TCR-associated genes FYN, ITK, CD4, LCK and LAT, which was associated with increased H3K4me3 at the FYN and ITK gene loci and increased chromatin accessibility at the CD4, LCK and LAT loci. These findings indicate that neonatal TCR-dependent defects in activation are epigenetically regulated and provide a potentially targetable mechanism to enhance neonatal CD4+ T-cell responses.


Assuntos
Linfócitos T CD4-Positivos , Cromatina , Adulto , Cromatina/metabolismo , Histonas , Humanos , Recém-Nascido , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
J Vasc Surg ; 75(2): 398-406.e3, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742882

RESUMO

OBJECTIVE: Vascular surgeon-scientists shape the future of our specialty through rigorous scientific investigation and innovation in clinical care and by training the next generation of surgeon-scientists. The Society for Vascular Surgery Foundation (SVSF) supports the development of surgeon-scientists through the Mentored Research Career Development Award (SVSF-CDA) program, providing supplemental funds to recipients of National Institutes of Health (NIH) K08/K23 grants. We evaluated the ongoing success of this mission. METHODS: The curriculum vitae of the 41 recipients of the SVSF supplemental funding from 1999 to 2021 were collected and reviewed to evaluate the academic achievements, define the programmatic accomplishments and return on investment, and identify areas for strategic improvement. RESULTS: For nearly 22 years, the SVSF has awarded supplemental funds for 31 K08 and 10 K23 grants to SVS members from 32 institutions. Of the 41 awardees, 34 have completed their K-funding and 7 are still being supported. Eleven awardees (27%) were women, including six of the current awardees (75%). However, only slight ethnic/racial diversity was found in the program. The awardees had obtained K-funding ∼4 years after becoming faculty. Eleven awardees (27%) were supported by Howard Hughes, NIH F32, or NIH T32 grants during training. To date, the SVSF has committed $12 million to the SVSF-CDA program. Among the 34 who have completed their K-funding, 21 (62%) successfully obtained NIH R01, Veterans Affairs, or Department of Defense funding. The awardees have secured >$114 million in federal funding, representing a 9.5-fold financial return on investment for the SVSF. In addition to research endeavors, 11 awardees (27%) hold endowed professorships and 19 (46%) have secured tenure at their institution. Many of the awardees hold or have held leadership positions, including 18 division chiefs (44%), 11 program directors (27%), 5 chairs of departments of surgery (12%), and 1 dean (2%). Eleven (27%) have served as president of a regional or national society, and 24 (59%) participate in NIH study sections. Of the 34 who have completed their K-funding, 15 (44%) have continued to maintain active independent research funding. CONCLUSIONS: The SVSF-CDA program is highly effective in the development of vascular surgeon-scientists who contribute to the leadership and growth of academic vascular surgery with a 9.5-fold return on investment. The number of female awardees has increased in recent years but ethnic/racial diversity has remained poor. Although 62% successfully transitioned to federal funding, fewer than one half have remained funded over time. Retention in research and increasing diversity for the awardees are major concerns and important areas of strategic focus for the SVSF.


Assuntos
Distinções e Prêmios , Pesquisa Biomédica/tendências , Previsões , Mentores , Sociedades Médicas , Cirurgiões/economia , Procedimentos Cirúrgicos Vasculares/tendências , Adulto , Pesquisa Biomédica/economia , Feminino , Seguimentos , Humanos , Liderança , Masculino , Pessoa de Meia-Idade , Pesquisadores/economia , Pesquisadores/tendências , Estudos Retrospectivos , Estados Unidos , Procedimentos Cirúrgicos Vasculares/economia
18.
J Vasc Surg ; 76(6): 1432-1439.e2, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35944733

RESUMO

In 2011, the Society for Vascular Surgery (SVS) prepared a set of clinical research priorities through a survey of its membership. These priorities were developed with the goal of enhancing clinical research to improve care for vascular patients. In the subsequent decade, several of these priorities served as the focus of clinical trials and significant research efforts. It was understood from the outset that this list of priorities represented a starting point with the intention that they be reevaluated at suitable intervals. In 2021, the SVS Research Council set out to update the research priorities by surveying the SVS membership and engaged a panel of subject matter experts. This process resulted in an updated set of vascular research priorities that more clearly align with current areas of emphasis. Our priorities remain focused on basic areas including aortic disease, carotid disease, lower extremity arterial disease, venous disease, dialysis access, and medical management of vascular disease, along with the topic of health care disparities. The 10 updated priorities reported herein reflect our increasing awareness of the need to understand vascular disease pathogenesis and prevention in the context of a diverse patient population. Importantly, patient-centered outcomes and personalized vascular care are at the core of these updated priorities. Similar to the aims of the original 2011 clinical research priorities, our hope is that this updated list will help to drive large-scale investigations that will improve how we care for our vascular patients.


Assuntos
Especialidades Cirúrgicas , Doenças Vasculares , Humanos , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Extremidade Inferior/irrigação sanguínea , Doenças Vasculares/diagnóstico , Doenças Vasculares/cirurgia , Avaliação de Resultados em Cuidados de Saúde
19.
J Magn Reson Imaging ; 56(4): 1068-1076, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35167152

RESUMO

BACKGROUND: Background parenchymal enhancement (BPE) is assessed on breast MRI reports as mandated by the Breast Imaging Reporting and Data System (BI-RADS) but is prone to inter and intrareader variation. Semiautomated and fully automated BPE assessment tools have been developed but none has surpassed radiologist BPE designations. PURPOSE: To develop a deep learning model for automated BPE classification and to compare its performance with current standard-of-care radiology report BPE designations. STUDY TYPE: Retrospective. POPULATION: Consecutive high-risk patients (i.e. >20% lifetime risk of breast cancer) who underwent contrast-enhanced screening breast MRI from October 2013 to January 2019. The study included 5224 breast MRIs, divided into 3998 training, 444 validation, and 782 testing exams. On radiology reports, 1286 exams were categorized as high BPE (i.e., marked or moderate) and 3938 as low BPE (i.e., mild or minimal). FIELD STRENGTH/SEQUENCE: A 1.5 T or 3 T system; one precontrast and three postcontrast phases of fat-saturated T1-weighted dynamic contrast-enhanced imaging. ASSESSMENT: Breast MRIs were used to develop two deep learning models (Slab artificial intelligence (AI); maximum intensity projection [MIP] AI) for BPE categorization using radiology report BPE labels. Models were tested on a heldout test sets using radiology report BPE and three-reader averaged consensus as the reference standards. STATISTICAL TESTS: Model performance was assessed using receiver operating characteristic curve analysis. Associations between high BPE and BI-RADS assessments were evaluated using McNemar's chi-square test (α* = 0.025). RESULTS: The Slab AI model significantly outperformed the MIP AI model across the full test set (area under the curve of 0.84 vs. 0.79) using the radiology report reference standard. Using three-reader consensus BPE labels reference standard, our AI model significantly outperformed radiology report BPE labels. Finally, the AI model was significantly more likely than the radiologist to assign "high BPE" to suspicious breast MRIs and significantly less likely than the radiologist to assign "high BPE" to negative breast MRIs. DATA CONCLUSION: Fully automated BPE assessments for breast MRIs could be more accurate than BPE assessments from radiology reports. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Radiologistas , Estudos Retrospectivos
20.
J Immunol ; 204(9): 2503-2513, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205424

RESUMO

Macrophages are critical for the initiation and resolution of the inflammatory phase of wound healing. In diabetes, macrophages display a prolonged inflammatory phenotype preventing tissue repair. TLRs, particularly TLR4, have been shown to regulate myeloid-mediated inflammation in wounds. We examined macrophages isolated from wounds of patients afflicted with diabetes and healthy controls as well as a murine diabetic model demonstrating dynamic expression of TLR4 results in altered metabolic pathways in diabetic macrophages. Further, using a myeloid-specific mixed-lineage leukemia 1 (MLL1) knockout (Mll1f/fLyz2Cre+ ), we determined that MLL1 drives Tlr4 expression in diabetic macrophages by regulating levels of histone H3 lysine 4 trimethylation on the Tlr4 promoter. Mechanistically, MLL1-mediated epigenetic alterations influence diabetic macrophage responsiveness to TLR4 stimulation and inhibit tissue repair. Pharmacological inhibition of the TLR4 pathway using a small molecule inhibitor (TAK-242) as well as genetic depletion of either Tlr4 (Tlr4-/- ) or myeloid-specific Tlr4 (Tlr4f/fLyz2Cre+) resulted in improved diabetic wound healing. These results define an important role for MLL1-mediated epigenetic regulation of TLR4 in pathologic diabetic wound repair and suggest a target for therapeutic manipulation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Epigênese Genética/genética , Macrófagos/fisiologia , Receptor 4 Toll-Like/genética , Cicatrização/genética , Idoso , Animais , Epigênese Genética/imunologia , Feminino , Histonas/genética , Histonas/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/imunologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Receptor 4 Toll-Like/imunologia , Cicatrização/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA