Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nucleic Acids Res ; 52(5): 2446-2462, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38296823

RESUMO

The complement of tRNA genes within a genome is typically considered to be a (relatively) stable characteristic of an organism. Here, we demonstrate that bacterial tRNA gene set composition can be more flexible than previously appreciated, particularly regarding tRNA gene copy number. We report the high-rate occurrence of spontaneous, large-scale, tandem duplication events in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The identified duplications are up to ∼1 Mb in size (∼15% of the wildtype genome) and are predicted to change the copy number of up to 917 genes, including several tRNA genes. The observed duplications are inherently unstable: they occur, and are subsequently lost, at extremely high rates. We propose that this unusually plastic type of mutation provides a mechanism by which tRNA gene set diversity can be rapidly generated, while simultaneously preserving the underlying tRNA gene set in the absence of continued selection. That is, if a tRNA set variant provides no fitness advantage, then high-rate segregation of the duplication ensures the maintenance of the original tRNA gene set. However, if a tRNA gene set variant is beneficial, the underlying duplication fragment(s) may persist for longer and provide raw material for further, more stable, evolutionary change.


Assuntos
Duplicação Gênica , Pseudomonas fluorescens , RNA de Transferência , Dosagem de Genes , Genes Bacterianos , Mutação , Pseudomonas fluorescens/genética , RNA de Transferência/genética
2.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37399035

RESUMO

Phage therapy is a promising method for the treatment of multidrug-resistant bacterial infections. However, its long-term efficacy depends on understanding the evolutionary effects of the treatment. Current knowledge of such evolutionary effects is lacking, even in well-studied systems. We used the bacterium Escherichia coli C and its bacteriophage ΦX174, which infects cells using host lipopolysaccharide (LPS) molecules. We first generated 31 bacterial mutants resistant to ΦX174 infection. Based on the genes disrupted by these mutations, we predicted that these E. coli C mutants collectively produce eight unique LPS structures. We then developed a series of evolution experiments to select for ΦX174 mutants capable of infecting the resistant strains. During phage adaptation, we distinguished two types of phage resistance: one that was easily overcome by ΦX174 with few mutational steps ("easy" resistance) and one that was more difficult to overcome ("hard" resistance). We found that increasing the diversity of the host and phage populations could accelerate the adaptation of phage ΦX174 to overcome the hard resistance phenotype. From these experiments, we isolated 16 ΦX174 mutants that, together, can infect all 31 initially resistant E. coli C mutants. Upon determining the infectivity profiles of these 16 evolved phages, we uncovered 14 distinct profiles. Given that only eight profiles are anticipated if the LPS predictions are correct, our findings highlight that the current understanding of LPS biology is insufficient to accurately forecast the evolutionary outcomes of bacterial populations infected by phage.


Assuntos
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Lipopolissacarídeos/farmacologia , Bacteriófagos/genética , Mutação , Fenótipo
3.
Mol Microbiol ; 117(2): 394-410, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856020

RESUMO

Many bacteria form mats at the air-liquid interface of static microcosms. These structures typically involve the secretion of exopolysaccharides, the production of which is often controlled by the secondary messenger c-di-GMP. Mechanisms of mat formation have been particularly well characterized in Pseudomonas fluorescens SBW25; stimuli or mutations that increase c-di-GMP production by diguanylate cyclases (WspR, AwsR, and MwsR) result in the secretion of cellulose and mat formation. Here, we characterize and compare mat formation in two close relatives of SBW25: Pseudomonas simiae PICF7 and P. fluorescens A506. We find that PICF7-the strain more closely related to SBW25-can form mats through mutations affecting the activity of the same three diguanylate cyclases as SBW25. However, instead of cellulose, these mutations activate production of the exopolysaccharide Pel. We also provide evidence for at least two further-as yet uncharacterized-routes to mat formation by PICF7. P. fluorescens A506, while retaining the same mutational routes to mat formation as SBW25 and PICF7, preferentially forms mats by a semi-heritable mechanism that culminates in Psl and Pga over-production. Our results demonstrate a high level of evolutionary flexibility in the molecular and structural routes to mat formation, even among close relatives.


Assuntos
Biofilmes , Pseudomonas fluorescens , Evolução Biológica , GMP Cíclico , Mutação , Pseudomonas/genética , Pseudomonas aeruginosa , Pseudomonas fluorescens/genética
4.
RNA Biol ; 20(1): 48-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727270

RESUMO

Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.


Assuntos
Genoma , RNA de Transferência , RNA de Transferência/genética
5.
Microbiology (Reading) ; 167(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032565

RESUMO

Bacteria often evolve resistance to phage through the loss or modification of cell surface receptors. In Escherichia coli and phage λ, such resistance can catalyze a coevolutionary arms race focused on host and phage structures that interact at the outer membrane. Here, we analyse another facet of this arms race involving interactions at the inner membrane, whereby E. coli evolves mutations in mannose permease-encoding genes manY and manZ that impair λ's ability to eject its DNA into the cytoplasm. We show that these man mutants arose concurrently with the arms race at the outer membrane. We tested the hypothesis that λ evolved an additional counter-defence that allowed them to infect bacteria with deleted man genes. The deletions severely impaired the ancestral λ, but some evolved phage grew well on the deletion mutants, indicating that they regained infectivity by evolving the ability to infect hosts independently of the mannose permease. This coevolutionary arms race fulfils the model of an inverse gene-for-gene infection network. Taken together, the interactions at both the outer and inner membranes reveal that coevolutionary arms races can be richer and more complex than is often appreciated.


Assuntos
Membrana Externa Bacteriana/imunologia , Bacteriófago lambda/fisiologia , Evolução Biológica , Proteínas de Escherichia coli/imunologia , Escherichia coli/genética , Escherichia coli/virologia , Membrana Externa Bacteriana/virologia , Bacteriófago lambda/genética , Escherichia coli/imunologia , Proteínas de Escherichia coli/genética , Interações Hospedeiro-Patógeno , Mutação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/imunologia
6.
Mol Biol Evol ; 36(5): 1071-1085, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835268

RESUMO

Repeated evolution of functionally similar phenotypes is observed throughout the tree of life. The extent to which the underlying genetics are conserved remains an area of considerable interest. Previously, we reported the evolution of colony switching in two independent lineages of Pseudomonas fluorescens SBW25. The phenotypic and genotypic bases of colony switching in the first lineage (Line 1) have been described elsewhere. Here, we deconstruct the evolution of colony switching in the second lineage (Line 6). We show that, as for Line 1, Line 6 colony switching results from an increase in the expression of a colanic acid-like polymer (CAP). At the genetic level, nine mutations occur in Line 6. Only one of these-a nonsynonymous point mutation in the housekeeping sigma factor rpoD-is required for colony switching. In contrast, the genetic basis of colony switching in Line 1 is a mutation in the metabolic gene carB. A molecular model has recently been proposed whereby the carB mutation increases capsulation by redressing the intracellular balance of positive (ribosomes) and negative (RsmAE/CsrA) regulators of a positive feedback loop in capsule expression. We show that Line 6 colony switching is consistent with this model; the rpoD mutation generates an increase in ribosomal gene expression, and ultimately an increase in CAP expression.


Assuntos
Evolução Biológica , Fenótipo , Pseudomonas fluorescens/genética , Cápsulas Bacterianas/fisiologia , Epistasia Genética , Regulação Bacteriana da Expressão Gênica , Mutação , Proteínas Ribossômicas/genética
7.
Nature ; 494(7438): 463-7, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23395960

RESUMO

The extinction rate of populations is predicted to rise under increasing rates of environmental change. If a population experiencing increasingly stressful conditions lacks appropriate phenotypic plasticity or access to more suitable habitats, then genetic change may be the only way to avoid extinction. Evolutionary rescue from extinction occurs when natural selection enriches a population for more stress-tolerant genetic variants. Some experimental studies have shown that lower rates of environmental change lead to more adapted populations or fewer extinctions. However, there has been little focus on the genetic changes that underlie evolutionary rescue. Here we demonstrate that some evolutionary trajectories are contingent on a lower rate of environmental change. We allowed hundreds of populations of Escherichia coli to evolve under variable rates of increase in concentration of the antibiotic rifampicin. We then genetically engineered all combinations of mutations from isolates evolved under lower rates of environmental change. By assessing fitness of these engineered strains across a range of drug concentrations, we show that certain genotypes are evolutionarily inaccessible under rapid environmental change. Rapidly deteriorating environments not only limit mutational opportunities by lowering population size, but they can also eliminate sets of mutations as evolutionary options. As anthropogenic activities are leading to environmental change at unprecedented rapidity, it is critical to understand how the rate of environmental change affects both demographic and genetic underpinnings of evolutionary rescue.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Mudança Climática , Extinção Biológica , Aptidão Genética/genética , Modelos Biológicos , Mutagênese/genética , Adaptação Fisiológica/efeitos dos fármacos , Antibióticos Antituberculose/farmacologia , Mudança Climática/mortalidade , Mudança Climática/estatística & dados numéricos , Contagem de Colônia Microbiana , Análise Mutacional de DNA , RNA Polimerases Dirigidas por DNA , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Aptidão Genética/efeitos dos fármacos , Genótipo , Atividades Humanas , Testes de Sensibilidade Microbiana , Mutagênese/efeitos dos fármacos , Mutação/genética , Densidade Demográfica , Rifampina/farmacologia , Fatores de Tempo
8.
PLoS Biol ; 13(3): e1002109, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25763575

RESUMO

Phenotype switching is commonly observed in nature. This prevalence has allowed the elucidation of a number of underlying molecular mechanisms. However, little is known about how phenotypic switches arise and function in their early evolutionary stages. The first opportunity to provide empirical insight was delivered by an experiment in which populations of the bacterium Pseudomonas fluorescens SBW25 evolved, de novo, the ability to switch between two colony phenotypes. Here we unravel the molecular mechanism behind colony switching, revealing how a single nucleotide change in a gene enmeshed in central metabolism (carB) generates such a striking phenotype. We show that colony switching is underpinned by ON/OFF expression of capsules consisting of a colanic acid-like polymer. We use molecular genetics, biochemical analyses, and experimental evolution to establish that capsule switching results from perturbation of the pyrimidine biosynthetic pathway. Of central importance is a bifurcation point at which uracil triphosphate is partitioned towards either nucleotide metabolism or polymer production. This bifurcation marks a cell-fate decision point whereby cells with relatively high pyrimidine levels favour nucleotide metabolism (capsule OFF), while cells with lower pyrimidine levels divert resources towards polymer biosynthesis (capsule ON). This decision point is present and functional in the wild-type strain. Finally, we present a simple mathematical model demonstrating that the molecular components of the decision point are capable of producing switching. Despite its simple mutational cause, the connection between genotype and phenotype is complex and multidimensional, offering a rare glimpse of how noise in regulatory networks can provide opportunity for evolution.


Assuntos
Regulação Bacteriana da Expressão Gênica , Modelos Estatísticos , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos/biossíntese , Pseudomonas fluorescens/genética , Pirimidinas/biossíntese , Cápsulas Bacterianas/metabolismo , Evolução Biológica , Genótipo , Redes e Vias Metabólicas/genética , Fenótipo , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/ultraestrutura
9.
Nature ; 462(7269): 90-3, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19890329

RESUMO

Bet hedging-stochastic switching between phenotypic states-is a canonical example of an evolutionary adaptation that facilitates persistence in the face of fluctuating environmental conditions. Although bet hedging is found in organisms ranging from bacteria to humans, direct evidence for an adaptive origin of this behaviour is lacking. Here we report the de novo evolution of bet hedging in experimental bacterial populations. Bacteria were subjected to an environment that continually favoured new phenotypic states. Initially, our regime drove the successive evolution of novel phenotypes by mutation and selection; however, in two (of 12) replicates this trend was broken by the evolution of bet-hedging genotypes that persisted because of rapid stochastic phenotype switching. Genome re-sequencing of one of these switching types revealed nine mutations that distinguished it from the ancestor. The final mutation was both necessary and sufficient for rapid phenotype switching; nonetheless, the evolution of bet hedging was contingent upon earlier mutations that altered the relative fitness effect of the final mutation. These findings capture the adaptive evolution of bet hedging in the simplest of organisms, and suggest that risk-spreading strategies may have been among the earliest evolutionary solutions to life in fluctuating environments.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Meio Ambiente , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/fisiologia , Adaptação Fisiológica/genética , Forma Celular , Contagem de Colônia Microbiana , Genes Bacterianos/genética , Aptidão Genética , Genótipo , Modelos Biológicos , Fenótipo , Pseudomonas fluorescens/citologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Seleção Genética , Processos Estocásticos
10.
Environ Microbiol ; 16(7): 2267-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24684210

RESUMO

Food security depends on enhancing production and reducing loss to pests and pathogens. A promising alternative to agrochemicals is the use of plant growth-promoting rhizobacteria (PGPR), which are commonly associated with many, if not all, plant species. However, exploiting the benefits of PGPRs requires knowledge of bacterial function and an in-depth understanding of plant-bacteria associations. Motility is important for colonization efficiency and microbial fitness in the plant environment, but the mechanisms employed by bacteria on and around plants are not well understood. We describe and investigate an atypical mode of motility in Pseudomonas fluorescens SBW25 that was revealed only after flagellum production was eliminated by deletion of the master regulator fleQ. Our results suggest that this 'spidery spreading' is a type of surface motility. Transposon mutagenesis of SBW25ΔfleQ (SBW25Q) produced mutants, defective in viscosin production, and surface spreading was also abolished. Genetic analysis indicated growth-dependency, production of viscosin, and several potential regulatory and secretory systems involved in the spidery spreading phenotype. Moreover, viscosin both increases efficiency of surface spreading over the plant root and protects germinating seedlings in soil infected with the plant pathogen Pythium. Thus, viscosin could be a useful target for biotechnological development of plant growth promotion agents.


Assuntos
Flagelos/metabolismo , Peptídeos Cíclicos/biossíntese , Reguladores de Crescimento de Plantas/biossíntese , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/metabolismo , Antibiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/microbiologia , Elementos de DNA Transponíveis , Flagelos/genética , Expressão Gênica , Movimento , Peptídeos Cíclicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Pseudomonas fluorescens/genética , Pythium/efeitos dos fármacos , Pythium/crescimento & desenvolvimento , Pythium/patogenicidade , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Simbiose , Transativadores/deficiência , Transativadores/genética
11.
Elife ; 122023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862572

RESUMO

The rate and accuracy of translation hinges upon multiple components - including transfer RNA (tRNA) pools, tRNA modifying enzymes, and rRNA molecules - many of which are redundant in terms of gene copy number or function. It has been hypothesized that the redundancy evolves under selection, driven by its impacts on growth rate. However, we lack empirical measurements of the fitness costs and benefits of redundancy, and we have poor a understanding of how this redundancy is organized across components. We manipulated redundancy in multiple translation components of Escherichia coli by deleting 28 tRNA genes, 3 tRNA modifying systems, and 4 rRNA operons in various combinations. We find that redundancy in tRNA pools is beneficial when nutrients are plentiful and costly under nutrient limitation. This nutrient-dependent cost of redundant tRNA genes stems from upper limits to translation capacity and growth rate, and therefore varies as a function of the maximum growth rate attainable in a given nutrient niche. The loss of redundancy in rRNA genes and tRNA modifying enzymes had similar nutrient-dependent fitness consequences. Importantly, these effects are also contingent upon interactions across translation components, indicating a layered hierarchy from copy number of tRNA and rRNA genes to their expression and downstream processing. Overall, our results indicate both positive and negative selection on redundancy in translation components, depending on a species' evolutionary history with feasts and famines.


Translation is the process by which cellular machines called ribosomes use the information encoded in genes to make proteins . Every organism requires two types of RNA molecules to make new proteins: ribosomal RNAs (rRNAs, which form part of the ribosome) and transfer RNAs (tRNAs, which transport the amino acid molecules that form proteins to the ribosomes). These RNA molecules are coded in the genome, but different organisms have different 'copy numbers': some genomes contain just a few copies of each of these genes, while others have thousands. This apparent redundancy ­ the presence of several copies of the same gene ­ is puzzling because it is costly to make and maintain DNA and RNA. This leads to an important question: how does redundancy in these important genes (coding for tRNAs and rRNAs) evolve? The answer is key to understanding how one of the most fundamental cellular processes, the making of proteins from DNA, has evolved. A possible reason for organisms to have many copies of the genes required to make proteins is to allow rapid translation, which allows cells to divide faster, and populations of cells to grow more quickly. However, this would likely mean that, when nutrients are scarce, carrying and translating many copies of the same gene would become a burden on the cell. Raval et al. set out to test this idea by measuring the costs and benefits of seemingly redundant translation components. To do this, Raval et al. deleted some of the redundant gene copies in the bacterium Escherichia coli and asked if that changed bacterial growth. The experiments showed that when nutrients were plentiful, cells with more copies of the genes (high redundancy) were better able to use the nutrients and divide rapidly. However, when nutrients were limited, bacteria with extra gene copies divided more slowly, showing that the extra genes are indeed a big burden on the cell. Raval et al. propose that nutrients available in the environment ultimately determine whether redundancy of the translation machinery is a blessing or a curse. This suggests that the redundancy and underlying growth strategies of different organisms are forged by their experiences of feast and famine during their evolutionary past. Importantly, by testing the joint effect of many different molecules involved in translation, Raval et al. uncovered several strategies that may maximize bacterial growth and protein production. Their results could thus be useful for optimizing the synthesis of important products that use growing cells as factories ­ from beer to insulin ­ where the rate of growth is critical.


Assuntos
Evolução Biológica , Escherichia coli , Análise Custo-Benefício , Escherichia coli/genética , Exercício Físico , Dosagem de Genes
12.
Elife ; 112022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793223

RESUMO

During the struggle for survival, populations occasionally evolve new functions that give them access to untapped ecological opportunities. Theory suggests that coevolution between species can promote the evolution of such innovations by deforming fitness landscapes in ways that open new adaptive pathways. We directly tested this idea by using high-throughput gene editing-phenotyping technology (MAGE-Seq) to measure the fitness landscape of a virus, bacteriophage λ, as it coevolved with its host, the bacterium Escherichia coli. An analysis of the empirical fitness landscape revealed mutation-by-mutation-by-host-genotype interactions that demonstrate coevolution modified the contours of λ's landscape. Computer simulations of λ's evolution on a static versus shifting fitness landscape showed that the changes in contours increased λ's chances of evolving the ability to use a new host receptor. By coupling sequencing and pairwise competition experiments, we demonstrated that the first mutation λ evolved en route to the innovation would only evolve in the presence of the ancestral host, whereas later steps in λ's evolution required the shift to a resistant host. When time-shift replays of the coevolution experiment were run where host evolution was artificially accelerated, λ did not innovate to use the new receptor. This study provides direct evidence for the role of coevolution in driving evolutionary novelty and provides a quantitative framework for predicting evolution in coevolving ecological communities.


Assuntos
Parasitos , Animais , Evolução Biológica , Escherichia coli/genética , Genótipo , Mutação
13.
Microb Cell Fact ; 10 Suppl 1: S14, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21995592

RESUMO

Stochastic phenotype switching - or bet hedging - is a pervasive feature of living systems and common in bacteria that experience fluctuating (unpredictable) environmental conditions. Under such conditions, the capacity to generate variable offspring spreads the risk of being maladapted in the present environment, against offspring likely to have some chance of survival in the future. While a rich subject for theoretical studies, little is known about the selective causes responsible for the evolutionary emergence of stochastic phenotype switching. Here we review recent work - both theoretical and experimental - that sheds light on ecological factors that favour switching types over non-switching types. Of particular relevance is an experiment that provided evidence for an adaptive origin of stochastic phenotype switching by subjecting bacterial populations to a selective regime that mimicked essential features of the host immune response. Central to the emergence of switching types was frequent imposition of 'exclusion rules' and 'population bottlenecks' - two complementary faces of frequency dependent selection. While features of the immune response, exclusion rules and bottlenecks are likely to operate in many natural environments. Together these factors define a set of selective conditions relevant to the evolution of stochastic switching, including antigenic variation and bacterial persistence.


Assuntos
Adaptação Fisiológica/fisiologia , Fenômenos Fisiológicos Bacterianos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Evolução Biológica , Fenótipo , Processos Estocásticos
14.
Elife ; 92020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33124983

RESUMO

Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45-290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.


Assuntos
DNA Bacteriano/genética , Duplicação Gênica , Pseudomonas fluorescens/genética , RNA de Transferência de Serina/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Evolução Molecular , Pseudomonas fluorescens/metabolismo , RNA de Transferência de Serina/metabolismo
15.
Genome Biol Evol ; 9(8): 2110-2121, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910967

RESUMO

Selfish genetic elements, such as insertion sequences and transposons are found in most genomes. Transposons are usually identifiable by their high copy number within genomes. In contrast, REP-associated tyrosine transposases (RAYTs), a recently described class of bacterial transposase, are typically present at just one copy per genome. This suggests that RAYTs no longer copy themselves and thus they no longer function as a typical transposase. Motivated by this possibility we interrogated thousands of fully sequenced bacterial genomes in order to determine patterns of RAYT diversity, their distribution across chromosomes and accessory elements, and rate of duplication. RAYTs encompass exceptional diversity and are divisible into at least five distinct groups. They possess features more similar to housekeeping genes than insertion sequences, are predominantly vertically transmitted and have persisted through evolutionary time to the point where they are now found in 24% of all species for which at least one fully sequenced genome is available. Overall, the genomic distribution of RAYTs suggests that they have been coopted by host genomes to perform a function that benefits the host cell.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Transposases/classificação , Transposases/genética , Biologia Computacional/métodos , Regulação Enzimológica da Expressão Gênica , Sequências Repetidas Invertidas , Filogenia , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA