Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; : e2402862, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888118

RESUMO

Lithium-sulfur (Li-S) batteries are expected to be the next-generation energy storage system due to the ultrahigh theoretical energy density and low cost. However, the notorious shuttle effect of higher-order polysulfides and the uncontrollable lithium dendrite growth are the two biggest challenges for commercially viable Li-S batteries. Herein, these two main challenges are solved by in situ polymerization of bi-functional gel polymer electrolyte (GPE). The initiator (SiCl4) not only drives the polymerization of 1,3-dioxolane (DOL) but also induces the construction of a hybrid solid electrolyte interphase (SEI) with inorganic-rich compositions on the Li anode. In addition, diatomaceous earth (DE) is added and anchored in the GPE to obtain PDOL-SiCl4-DE electrolyte through in situ polymerization. Combined with density functional theory (DFT) calculations, the hybrid SEI provides abundant adsorption sites for the deposition of Li+, inhibiting the growth of lithium dendrites. Meanwhile, the shuttle effect is greatly alleviated due to the strong adsorption capacity of DE toward lithium polysulfides. Therefore, the Li/Li symmetric cell and Li-S full cell assembled with PDOL-SiCl4-DE exhibit excellent cycling stability. This study offers a valuable reference for the development of high performance and safe Li-S batteries.

2.
Chemistry ; 30(19): e202304168, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38264940

RESUMO

"Carbon Peak and Carbon Neutrality" is an important strategic goal for the sustainable development of human society. Typically, a key means to achieve these goals is through electrochemical energy storage technologies and materials. In this context, the rational synthesis and modification of battery materials through new technologies play critical roles. Plasma technology, based on the principles of free radical chemistry, is considered a promising alternative for the construction of advanced battery materials due to its inherent advantages such as superior versatility, high reactivity, excellent conformal properties, low consumption and environmental friendliness. In this perspective paper, we discuss the working principle of plasma and its applied research on battery materials based on plasma conversion, deposition, etching, doping, etc. Furthermore, the new application directions of multiphase plasma associated with solid, liquid and gas sources are proposed and their application examples for batteries (e. g. lithium-ion batteries, lithium-sulfur batteries, zinc-air batteries) are given. Finally, the current challenges and future development trends of plasma technology are briefly summarized to provide guidance for the next generation of energy technologies.

3.
Small ; 19(42): e2303210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330662

RESUMO

The use of poly(1,3-dioxolane) (PDOL) electrolyte for lithium batteries has gained attention due to its high ionic conductivity, low cost, and potential for large-scale applications. However, its compatibility with Li metal needs improvement to build a stable solid electrolyte interface (SEI) toward metallic Li anode for practical lithium batteries. To address this concern, this study utilized a simple InCl3 -driven strategy for polymerizing DOL and building a stable LiF/LiCl/LiIn hybrid SEI, confirmed through X-ray photoelectron spectroscopy (XPS) and cryogenic-transmission electron microscopy (Cryo-TEM). Furthermore, density functional theory (DFT) calculations and finite element simulation (FES) verify that the hybrid SEI exhibits not only excellent electron insulating properties but also fast transport properties of Li+ . Moreover, the interfacial electric field shows an even potential distribution and larger Li+ flux, resulting in uniform dendrite-free Li deposition. The use of the LiF/LiCl/LiIn hybrid SEI in Li/Li symmetric batteries shows steady cycling for 2000 h, without experiencing a short circuit. The hybrid SEI also provided excellent rate performance and outstanding cycling stability in LiFePO4 /Li batteries, with a high specific capacity of 123.5 mAh g-1 at 10 C rate. This study contributes to the design of high-performance solid lithium metal batteries utilizing PDOL electrolytes.

4.
Small ; 19(24): e2300494, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36920095

RESUMO

Lithium-rich layered oxide (LRLO) materials have attracted significant attention due to their high specific capacity, low cost, and environmental friendliness. However, owing to its unique capacity activation mechanism, the release of lattice oxygen during the first charge process leads to a series of problems, such as severe voltage decay, poor cycle stability, and poor rate performance. Herein, a fluorinated quasi-solid-state electrolyte (QSSE) via a simple thermal polymerization method toward lithium metal batteries with LRLO materials is reported. The well-designed QSSE exhibits an ionic conductivity of 6.4 × 10-4 S cm-1 at 30 °C and a wide electrochemical stable window up to 5.6 V. Most importantly, XPS spectra demonstrate the generation of a LiF-rich electrode-electrolyte interface (EEI), where the in situ generated LiF provides strong protection against the structural degradation of LRLO materials and directs the uniform plating/stripping behaviors of lithium-ions to inhibit the formation of lithium dendrites. As a result, LRLO/QSSE/Li batteries exhibit excellent rate performance and demonstrate a large initial capacity for 209.7 mA h g-1 with a capacity retention of 80.8% after 200 cycles at 0.5C. This work provides a new insight for the LiF-rich EEI design of safe, high-performance quasi-solid-state lithium metal batteries.

5.
Chemistry ; 29(24): e202204031, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36745151

RESUMO

Photocatalytic methane oxidation to oxygenates with promising performance remains as a grand challenge due to the low productivity and severe overoxidation. Herein, SrWO4 /TiO2 heterojunction was developed for photocatalytic methane oxidation with O2 to liquid oxygenates ( Please replace "oxygenates" with "oxygenated")products under mild reaction conditions. The optimized SrWO4 /TiO2 catalyst exhibited high productivity of 13365 µmol/g with high selectivity of 98.7 % for oxygenates. Benefited from the intimate heterojunction interface of SrWO4 /TiO2 , the constructed I-type heterostructure improved the separation and transfer of photogenerated carriers, and a high-speed transfer channel for photogenerated carriers was fabricated. Simultaneously, the special band structure can increase the amount of photogenerated electrons and holes on the TiO2 surface, which promoted the formation of reactive oxygen species to enhance liquid oxygenates productivity.

6.
Small ; 17(37): e2101326, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331396

RESUMO

Argyrodite Li6 PS5 Cl with high Li+ conductivity is a promising material for solid-state electrolytes (SSEs) in all-solid-state lithium batteries (ASSLBs). However, the narrow electrochemical window of Li6 PS5 Cl limits its applications in ASSLBs with high energy densities, and those that consist of high-voltage cathode materials and metallic lithium anodes. Unstable lithium deposition and stripping at interfaces is also a factor that restricts its industrialization. Herein, the authors investigated the electrochemical stability of Li6 PS5 Cl using it as both the cathode and electrolyte. The Li6 PS5 Cl-C/Li6 PS5 Cl/Li cell and symmetric Li/Li6 PS5 Cl/Li cells failed after a certain number of cycles, and subsequently healed electrochemically. This failure/healing phenomenon recurred during the cycling process. The self-healing behavior is closely related to the electrochemical window, which suggests that it can be controlled by the charge-discharge voltage range. In-depth X-ray photoelectron spectroscopy, in situ Raman spectroscopy, and in situ electrochemical impedance spectroscopy revealed the reversible Li6 PS5 Cl decomposition and metallic lithium growth inside the electrolyte during the cycling process. This self-healing behavior is mainly attributed to the reciprocating lithium growth and reversible redox reaction of the Li6 PS5 Cl decomposition. The proposed self-healing mechanism is a key aspect for sulfide-based SSEs, guiding the interface modification, and material design of ASSLBs.

7.
Environ Sci Technol ; 54(4): 2539-2547, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31985212

RESUMO

Development of low-cost, high-efficiency, and environmentally benign adsorbents for mercury removal is of significant importance for environmental remediation. Herein, we report a novel porous puffed rice carbon (PRC) with co-implanted metal iron and sulfur, forming a high-quality PRC/Fe@S composite as a high-efficiency adsorbent for mercury removal from aqueous solution. The in situ-formed Fe nanoparticles in PRC are strongly coupled with sulfur via a supercritical CO2 fluid approach and dispersed homogeneously in the cross-linked hierarchical porous architecture. The pore formation mechanism of Fe on PRC is also proposed. The optimized PRC/Fe@S composite offers superior selective affinity, high removal efficiency, and ultrahigh adsorption capacity of up to 738.0 mg g-1. It is demonstrated that the hierarchical porous carbon in the PRC/Fe@S composite not only acts as a framework to stabilize and disperse Fe nanoparticles but also provides abundant pores and voids for absorbing Hg(II) from aqueous solution. More importantly, the absorbed Hg(II) can be reduced to Hg(0) by Fe and further chemically immobilized by sulfur. The enhanced coupled effect is discussed and proposed. Therefore, an innovative adsorption mechanism of adsorption-reduction-immobilization is proposed, which offers a new prospect in developing high-efficiency carbon-based adsorbents in environmental remediation.


Assuntos
Mercúrio , Oryza , Adsorção , Carbono , Ferro , Enxofre
8.
Small ; 15(38): e1902032, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31368636

RESUMO

Increasing awareness toward environmental remediation and renewable energy has led to a vigorous demand for exploring a win-win strategy to realize the eco-efficient conversion of pollutants ("trash") into energy-storage nanomaterials ("treasure"). Inspired by the biological metabolism of bacteria, Acidithiobacillus ferrooxidans (A. ferrooxidans) is successfully exploited as a promising eco-friendly sustainable biofactory for the controllable fabrication of α-Fe2 O3 nanorods via the oxidation of soluble ferrous irons to insoluble ferric substances (Jarosite, KFe3 (SO4 )2 (OH)6 ) and a facile subsequent heat treatment. It is demonstrated that the stable solid electrolyte interphase layers and marvelous cracks in situ formed in biometabolic α-Fe2 O3 nanorods play important roles that not only significantly enhance the structure stability but also facilitate electron and ion transfer. Consequently, these biometabolic α-Fe2 O3 nanorods deliver a superior stable capacity of 673.9 mAh g-1 at 100 mA g-1 over 200 cycles and a remarkable multi-rate capability that observably prevails over the commercial counterpart. It is highly expected that such biological synthesis strategies can shed new light on an emerging field of research interconnecting biotechnology, energy technology, environmental technology, and nanotechnology.


Assuntos
Acidithiobacillus/química , Fontes de Energia Elétrica , Lítio/química , Nanoestruturas/química , Nanotubos/química , Nanotecnologia/métodos
9.
Small ; 15(33): e1902249, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31231950

RESUMO

The ability to efficiently convert CO2 into nanocarbons at low temperatures is highly desirable, as it would enable the environmentally benign utilization of greenhouse gases, yet this remains a considerable challenge. Herein, a one-step, ultrafast, and scalable strategy is demonstrated to efficiently convert CO2 into morphology-controlled nanocarbons at low temperatures. The conversion reactions between CO2 and LiH are achieved in less than 30 s at moderate conditions by introducing a very small amount of water, ball milling, or heating. Nanocarbons featuring wildly tunable morphology with characteristic dimensions ranging from nanoscale to macroscale are successfully synthesized by controlling the CO2 pressure and the synthesis routes. The gas blowing velocity and its distribution are revealed as the main reasons for the CO2 pressure and synthesis route dependent morphology and porosity of nanocarbons. Moreover, a two closed-loop reaction process including five-stage reactions is proposed for nanocarbons synthesis and LiH regeneration. The strategy provides a new opportunity for efficient and environmentally benign nanocarbons synthesis.

10.
Chemistry ; 25(32): 7719-7725, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972842

RESUMO

Silicon oxycarbides (SiOC) are regarded as potential anode materials for lithium-ion batteries, although inferior cycling stability and rate performance greatly limit their practical applications. Herein, amorphous SiOC is synthesized from Chlorella by means of a biotemplate method based on supercritical fluid technology. On this basis, tin particles with sizes of several nanometers are introduced into the SiOC matrix through the biosorption feature of Chlorella. As lithium-ion battery anodes, SiOC and Sn@SiOC can deliver reversible capacities of 440 and 502 mAh g-1 after 300 cycles at 100 mA g-1 with great cycling stability. Furthermore, as-synthesized Sn@SiOC presents an excellent high-rate cycling capability, which exhibits a reversible capacity of 209 mAh g-1 after 800 cycles at 5000 mA g-1 ; this is 1.6 times higher than that of SiOC. Such a novel approach has significance for the preparation of high-performance SiOC-based anodes.

11.
Nanotechnology ; 30(14): 144001, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620932

RESUMO

A novel, flexible non-precious-metal oxygen reduction reaction catalyst is fabricated by direct pyrolysis of carbon cloth decorated with an iron-coordinated aniline and pyrrole copolymer. The resultant Fe-N/C manifests superior activity, long-term stability in alkaline media and comparable activity in acidic electrolyte. The precursor carbon cloth modified with aniline and pyrrole copolymer provides high densities of carbon, nitrogen and iron-doping sites, which generates a great many active sites. Compared to the Pt/C catalyst, Fe-N/C pyrolyzed at 850 °C (Fe-N/C-850) shows excellent activity with onset and half-wave potentials of 17 mV and -174 mV in 0.1 M KOH, which are more activated than an iron-free catalyst (-29 mV and -235 mV) and comparable to those of Pt/C (28 mV and -237 mV) with the same loading. The electrocatalysis and reaction kinetics results demonstrate that Fe-N/C-850 will be a promising catalyst at low cost for applications in fuel cells.

12.
Nano Lett ; 18(5): 3104-3112, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29692176

RESUMO

High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg2B2O5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg2B2O5 and PEO-LiTFSI. Moreover, the interaction between Mg2B2O5 and -SO2- in TFSI- anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg2B2O5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g-1 under 0.2 C at 50, 40, and 30 °C. This strategy of employing Mg2B2O5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.

13.
Nano Lett ; 14(9): 5288-94, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25089648

RESUMO

Lithium-sulfur batteries show fascinating potential for advanced energy storage systems due to their high specific capacity, low-cost, and environmental benignity. However, the shuttle effect and the uncontrollable deposition of lithium sulfide species result in poor cycling performance and low Coulombic efficiency. Despite the recent success in trapping soluble polysulfides via porous matrix and chemical binding, the important mechanism of such controllable deposition of sulfur species has not been well understood. Herein, we discovered that conductive Magnéli phase Ti4O7 is highly effective matrix to bind with sulfur species. Compared with the TiO2-S, the Ti4O7-S cathodes exhibit higher reversible capacity and improved cycling performance. It delivers high specific capacities at various C-rates (1342, 1044, and 623 mAh g(-1) at 0.02, 0.1, and 0.5 C, respectively) and remarkable capacity retention of 99% (100 cycles at 0.1 C). The superior properties of Ti4O7-S are attributed to the strong adsorption of sulfur species on the low-coordinated Ti sites of Ti4O7 as revealed by density functional theory calculations and confirmed through experimental characterizations. Our study demonstrates the importance of surface coordination environment for strongly influencing the S-species binding. These findings can be also applicable to numerous other metal oxide materials.

14.
ACS Appl Mater Interfaces ; 16(1): 898-906, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154079

RESUMO

Titanium dioxide (TiO2) has been widely used as an alternative anodic material for lithium-ion batteries (LIBs) due to its ultrahigh capacity retention and long cycle lifespan. However, the restriction of lithium insertion, intrinsically poor electronic conductivity, and sluggish lithium ionic kinetics of bulk TiO2 hinder their specific capacity and rate performance. Herein, LiTiO2 nanoparticles (NPs) are synthesized via a facile ball milling method by the reaction of anatase TiO2 with LiH. The as-prepared LiTiO2 NPs have strong structural stability and a "zero strain" effect during the repeated intercalation/deintercalation, even at low potential. As anodic materials for LIBs, LiTiO2 NPs exhibit a superior rate performance of ∼100 mA h g-1 at 10C (3350 mA g-1) with a capacity retention of 100% after 1000 cycles, which is 5 times higher than that of the original commercial anatase TiO2 powder. The higher specific capacity of LiTiO2 NPs is attributed to the increased conversion of Ti3+ to Ti2+ on the porous surface of LiTiO2 NPs, which provides a more capacitive contribution. This study not only provides a new fabrication approach toward Ti-based anodes for ultrafast LIBs but also underscores the potential importance of embedding lithium into transition metal oxides as a strategy for boosting their electrochemical performance.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38623904

RESUMO

All-solid-state lithium batteries (ASSLBs) are attracting tremendous attention due to their improved safety and higher energy density. However, the use of a metallic lithium anode poses a major challenge due to its low stability and processability. Instead, the graphite anode exhibits high reversibility for the insertion/deinsertion of lithium ions, giving ASSLBs excellent cyclic stability but a lower energy density. To increase the energy density of ASSLBs with the graphite anode, it is necessary to lower the negative/positive (N/P) capacity ratio and to increase the charging voltage. These strategies bring new challenges to lithium metal plating and dendrite growth. Here, a nano-Ag-modified graphite composite electrode (Ag@Gr) is developed to overcome these shortcomings for Li5.5PS4.5Cl1.5-based ASSLBs. The Ag@Gr composite exhibits a strong ability to inhibit lithium metal plating and fast lithium-ion transport kinetics. Ag nanoparticles can accommodate excess Li, and the as-obtained Li-Ag alloy enhances the kinetics of the composite electrode. The ASSLB with the Li(Ni0.8Co0.1Mn0.1)O2 cathode and Ag@Gr anode achieves an energy density of 349 W h kg-1. The full cell using Ag@Gr with an N/P ratio of 0.6 also highlights the rate performance. This work provides a simple and effective method to regulate the charge transport kinetics of graphite anodes and improve the cyclic performance and energy density of ASSLBs.

16.
ChemSusChem ; : e202400159, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581393

RESUMO

Uneven lithium (Li) metal deposition typically results in uncontrollable dendrite growth, which renders an unsatisfactory cycling stability and coulombic efficiency (CE) of Li metal batteries (LMBs), preventing their practical application. Herein, a novel carbon cloth with the modification of ZnO nanosheets (ZnO@CC) is fabricated for LMBs. The as-prepared ZnO@CC with a cross-linked network significantly reduces the local current density, and the design of ZnO nanosheets can promote the uniform deposition of Li metal as lithiophilic sites. As a result, the Li metal anodes (LMAs) based on ZnO@CC (ZnO@CC@Li) enables a long cycle life over 640 hours with a low overpotential of 65 mV at a current density of 4 mA cm-2 with a capacity of 1 mAh cm-2 in the symmetric cell. Moreover, when coupling the ZnO@CC@Li with a LiFePO4 cathode, the assembled full cell exhibits excellent long cycle and rate performance, highlighting its promising practical application prospect.

17.
ChemSusChem ; : e202400840, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924365

RESUMO

Unfavorable parasitic reactions between the Ni-rich layered oxide cathode and the sulfide solid electrolyte have plagued the realization of all-solid-state rechargeable Li batteries. The accumulation of inactive by-products (P2Sx, S, POxn-and SOxn-) at the cathode-sulfide interface impedes fast Li-ion transfer, which accounts for sluggish reaction kinetics and significant loss of cathode capacity. Herein, we proposed an easily scalable approach to stabilize the cathode electrochemistry via coating the cathode particles by a uniform, Li+-conductive plastic-crystal electrolyte nanolayer on their surface. The electrolyte, which simply consists of succinonitrile and Li bis(trifluoromethanesulphonyl)imide, serves as an interfacial buffer to effectively suppress the adverse phase transition in highly delithiated cathode materials, and the loss of lattice oxygen and generation of inactive oxygenated by-products at the cathode-sulfide interface. Consequently, an all-solid-state rechargeable Li battery with the modified cathode delivers high specific capacities of 168 mAh g-1 at 0.1 C and a high capacity retention >80% after 100 cycles. Our work sheds new light on rational design of electrode-electrolyte interface for the next-generation high-energy batteries.

18.
ACS Nano ; 18(11): 8463-8474, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451076

RESUMO

All-solid-state lithium-sulfur batteries (ASSLSBs) have attracted wide attention due to their ultrahigh theoretical energy density and the ability of completely avoiding the shuttle effect. However, the further development of ASSLSBs is limited by the poor kinetic properties of the solid electrode interface. It remains a great challenge to achieve good kinetic properties, by common strategies to substitute sulfur-transition metal and organosulfur composites for sulfur without reducing the specific capacity of ASSLSBs. In this study, a sulfur-(Ketjen Black)-(bistrifluoromethanesulfonimide lithium salt) (S-KB-LiTFSI) composite is constructed by introducing LiTFSI into the S-KB composite. The initial discharge capacity reaches up to 1483 mA h g-1, benefited from the improved ionic conductivity and diffusion kinetics of the S-KB-LiTFSI composite, where numerous LiF interphases with a Li3N component are in situ formed during cycling. Combined with DFT calculations, it is found that the migration barriers of LiF and Li3N are much smaller than that of the Li6PS5Cl solid electrolyte. The fast ionic conductors of LiF and Li3N not only enhance the Li+ transfer efficiency but also improve the interfacial stability. Therefore, the assembled ASSLSBs operate stably for 600 cycles at 200 mA g-1, and this study provides an effective strategy for the further development of ASSLSBs.

19.
J Colloid Interface Sci ; 638: 908-917, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36737351

RESUMO

The replacement of traditional liquid electrolytes with polyethylene oxide (PEO) based composite polymer electrolytes (CPEs) is an important strategy to address the current flammability and explosiveness of lithium batteries since PEO CPEs have high flexibility, excellent processability and moderate cost. However, the insufficient ionic conductivity and inferior mechanical strength of PEO CPEs do not suit the operating requirements of all-solid-state lithium metal batteries at room temperature. Herein, three-dimensional (3D) framework composed of interweaved high-modulus polyimide (PI) nanofibers along with functional succinonitrile (SN) plasticizers are employed to synergistically reinforce the ionic conductivity and mechanical strength of PEO CPEs. Impressively, benefitting from the synergistic effects of 3D PI framework and SN plasticizer, PI-PEO-SN CPEs exhibits high ionic conductivity of 1.03 × 10-4 S cm-1 at 30 °C, remarkable tensile strength of 4.52 MPa, and superior Li dendrites blocking ability (>400 h at 0.1 mA cm-2). Such favorable features of PI-PEO-SN CPEs endow LiFePO4/PI-PEO-SN/Li solid-state prototype cells with high specific capacity (151.2 mA h g-1 at 0.2 C), long cycling lifespan (>150 cycles with 91.7 % capacity retention), and superior operating safety even under bending, folding and cutting harsh conditions. This work will pave the avenues to design and fabricate new high-performance PEO CPEs for the high energy density and safety all-solid-state batteries.


Assuntos
Lítio , Nanofibras , Polímeros , Metais , Eletrólitos , Polietilenoglicóis
20.
J Colloid Interface Sci ; 652(Pt A): 1063-1073, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37643524

RESUMO

Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline @ Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg-1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA