Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 14022-14035, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717031

RESUMO

Exploration of compositional disorder using conventional diffraction-based techniques is challenging for systems containing isoelectronic ions possessing similar coherent neutron scattering lengths. Here, we show that a multinuclear solid-state Nuclear Magnetic Resonance (NMR) approach provides compelling insight into the Ga3+/Ge4+ cation distribution and oxygen anion transport in a family of solid electrolytes with langasite structure and La3Ga5-xGe1+xO14+0.5x composition. Ultrahigh field 71Ga Magic Angle Spinning (MAS) NMR experiments acquired at 35.2 T offer striking resolution enhancement, thereby enabling clear detection of Ga sites in different coordination environments. Three-connected GaO4, four-connected GaO4 and GaO6 polyhedra are probed for the parent La3Ga5GeO14 structure, while one additional spectral feature corresponding to the key (Ga,Ge)2O8 structural unit which forms to accommodate the interstitial oxide ions is detected for the Ge4+-doped La3Ga3.5Ge2.5O14.75 phase. The complex spectral line shapes observed in the MAS NMR spectra are reproduced very accurately by the NMR parameters computed for a symmetry-adapted configurational ensemble that comprehensively models site disorder. This approach further reveals a Ga3+/Ge4+ distribution across all Ga/Ge sites that is controlled by a kinetically governed cation diffusion process. Variable temperature 17O MAS NMR experiments up to 700 °C importantly indicate that the presence of interstitial oxide ions triggers chemical exchange between all oxygen sites, thereby enabling atomic-scale understanding of the anion diffusion mechanism underpinning the transport properties of these materials.

2.
Chemphyschem ; 25(8): e202300934, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38279668

RESUMO

Multinuclear Nuclear Magnetic Resonance (NMR) spectroscopy of quadrupolar nuclei at ultrahigh magnetic field provides compelling insight into the short-range structure in a family of fast oxide ion electrolytes with La1+xSr1-xGa3O7+0.5x melilite structure. The striking resolution enhancement in the solid-state 71Ga NMR spectra measured with the world's unique series connected hybrid magnet operating at 35.2 T distinctly resolves Ga sites in four- and five-fold coordination environments. Detection of five-coordinate Ga centers in the site-disordered La1.54Sr0.46Ga3O7.27 melilite is critical given that the GaO5 unit accommodates interstitial oxide ions and provides excellent transport properties. This work highlights the importance of ultrahigh magnetic fields for the detection of otherwise broad spectral features in systems containing quadrupolar nuclei and the potential of ensemble-based computational approaches for the interpretation of NMR data acquired for site-disordered materials.

3.
Inorg Chem ; 63(22): 10179-10193, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38729620

RESUMO

Oxalate ligands are found in many classes of materials, including energy storage materials and biominerals. Determining their local environments at the atomic scale is thus paramount to establishing the structure and properties of numerous phases. Here, we show that high-resolution 17O solid-state NMR is a valuable asset for investigating the structure of crystalline oxalate systems. First, an efficient 17O-enrichment procedure of oxalate ligands is demonstrated using mechanochemistry. Then, 17O-enriched oxalates were used for the synthesis of the biologically relevant calcium oxalate monohydrate (COM) phase, enabling the analysis of its structure and heat-induced phase transitions by high-resolution 17O NMR. Studies of the low-temperature COM form (LT-COM), using magnetic fields from 9.4 to 35.2 T, as well as 13C-17O MQ/D-RINEPT and 17O{1H} MQ/REDOR experiments, enabled the 8 inequivalent oxygen sites of the oxalates to be resolved, and tentatively assigned. The structural changes upon heat treatment of COM were also followed by high-resolution 17O NMR, providing new insight into the structures of the high-temperature form (HT-COM) and anhydrous calcium oxalate α-phase (α-COA), including the presence of structural disorder in the latter case. Overall, this work highlights the ease associated with 17O-enrichment of oxalate oxygens, and how it enables high-resolution solid-state NMR, for "NMR crystallography" investigations.

4.
J Phys Chem A ; 128(21): 4288-4296, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38748612

RESUMO

We report solid-state 1H and 17O NMR results for four 17O-labeled organic compounds each containing an extensive carboxyl-bridged hydrogen bond (CBHB) network in the crystal lattice: tetrabutylammonium hydrogen di-[17O2]salicylate (1), [17O4]quinolinic acid (2), [17O4]dinicotinic acid (3), and [17O2]Gly/[17O2]Gly·HCl cocrystal (4). The 1H isotropic chemical shifts found for protons involved in different CBHB networks are between 8.2 and 20.5 ppm, which reflect very different hydrogen-bonding environments. Similarly, the 17O isotropic chemical shifts found for the carboxylate oxygen atoms in CBHB networks, spanning a large range between 166 and 341 ppm, are also remarkably sensitive to the hydrogen-bonding environments. We introduced a simple graphical representation in which 1H and 17O chemical shifts are displayed along the H and O atomic chains that form the CBHB network. In such a depiction, because wavy patterns are often observed, we refer to these wavy patterns as 1H/17O chemical shift waves. Typical patterns of 1H/17O chemical shift waves in CBHB networks are discussed. The reported 1H and 17O NMR parameters for the CBHB network models examined in this study can serve as benchmarks to aid in spectral interpretation for CBHB networks in proteins.

5.
CrystEngComm ; 26(9): 1219-1233, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38419975

RESUMO

This study describes the discovery of a unique ionic cocrystal of the active pharmaceutical ingredient (API) ponatinib hydrochloride (pon·HCl), and characterization using single-crystal X-ray diffraction (SCXRD) and solid-state NMR (SSNMR) spectroscopy. Pon·HCl is a multicomponent crystal that features an unusual stoichiometry, with an asymmetric unit containing both monocations and dications of the ponatinib molecule, three water molecules, and three chloride ions. Structural features include (i) a charged imidazopyridazine moiety that forms a hydrogen bond between the ponatinib monocations and dications and (ii) a chloride ion that does not feature hydrogen bonds involving any organic moiety, instead being situated in a "square" arrangement with three water molecules. Multinuclear SSNMR, featuring high and ultra-high fields up to 35.2 T, provides the groundwork for structural interpretation of complex multicomponent crystals in the absence of diffraction data. A 13C CP/MAS spectrum confirms the presence of two crystallographically distinct ponatinib molecules, whereas 1D 1H and 2D 1H-1H DQ-SQ spectra identify and assign the unusually deshielded imidazopyridazine proton. 1D 35Cl spectra obtained at multiple fields confirm the presence of three distinct chloride ions, with density functional theory calculations providing key relationships between the SSNMR spectra and H⋯Cl- hydrogen bonding arrangements. A 2D 35Cl → 1H D-RINEPT spectrum confirms the spatial proximities between the chloride ions, water molecules, and amine moieties. This all suggests future application of multinuclear SSNMR at high and ultra-high fields to the study of complex API solid forms for which SCXRD data are unavailable, with potential application to heterogeneous mixtures or amorphous solid dispersions.

6.
Angew Chem Int Ed Engl ; : e202408574, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859545

RESUMO

All-solid-state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost-effectiveness. Developing potassium solid electrolytes (SEs) with high room-temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room-temperature ionic conductivity of 0.32 mS/cm and a low activation energy of 0.26 eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non-oxide potassium SEs. Solid-state 39K magic-angle-spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47 reveals an increased population of mobile K+ ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+ density and significantly enhanced K+ diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47 as a promising SE for all-solid-state potassium batteries.

7.
Faraday Discuss ; 241(0): 250-265, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134444

RESUMO

The possibility of enriching in 17O the water molecules within hydrated biominerals belonging to the Ca-pyrophosphate family was investigated, using liquid assisted grinding (LAG) in the presence of 17O-labelled water. Two phases with different hydration levels, namely triclinic calcium pyrophosphate dihydrate (Ca2P2O7·2H2O, denoted t-CPPD) and monoclinic calcium pyrophosphate tetrahydrate (Ca2P2O7·4H2O, denoted m-CPPT ß) were enriched in 17O using a "post-enrichment" strategy, in which the non-labelled precursors were ground under gentle milling conditions in the presence of stoichiometric quantities of 17O-enriched water (introduced here in very small volumes ∼10 µL). Using high-resolution 17O solid-state NMR (ssNMR) analyses at multiple magnetic fields, and dynamic nuclear polarisation (DNP)-enhanced 17O NMR, it was possible to show that the labelled water molecules are mainly located at the core of the crystal structures, but that they can enter the lattice in different ways, namely by dissolution/recrystallisation or by diffusion. Overall, this work sheds light on the importance of high-resolution 17O NMR to help decipher the different roles that water can play as a liquid-assisted grinding agent and as a reagent for 17O-isotopic enrichment.


Assuntos
Pirofosfato de Cálcio , Difosfatos , Cristalização , Pirofosfato de Cálcio/química , Água/química
8.
J Chem Phys ; 158(2): 024114, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641384

RESUMO

Saturation of electron magnetization by microwave irradiation under magic-angle spinning (MAS) is studied theoretically. The saturation is essential for dynamic nuclear polarization (DNP) enhancement of nuclear magnetic resonance signals. For a spin with a large g-anisotropy and a long T1 relative to the rotor period, the sample rotation distributes saturation to the whole powder sample spectrum. Analytical expressions for the saturation and frequency profiles are obtained. For a pair of coupled electrons such as those in bis-nitroxides, which are commonly used for MAS DNP, an el-er model (where el and er stand for electrons on the left and the right, respectively, in their spectral positions) is introduced to simplify the analysis of a coupled two-spin system under MAS. For such a system, strong electron couplings exchange magnetization during dipolar/J rotor events when the two electron frequencies cross each other. The exchange is equivalent to a swap of the el and er electrons. This allows for the treatment of a coupled spin pair as two independent spins such that an analytical solution can be obtained for the steady-state magnetization and the difference between the two electrons. The theoretical study with its analytical result provides a simple physical picture of electron saturation under MAS and of how radical properties and experimental parameters affect cross-effect DNP. The effects of depolarization and the extension to more coupled electron spins are also discussed using this approach.

9.
Proc Natl Acad Sci U S A ; 117(22): 11908-11915, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414918

RESUMO

Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by 17O NMR spectroscopy at 35.2 T (or 1,500 MHz for 1H) and computational studies. While backbone 15N spectra clearly indicate structural symmetry between the two subunits, single site 17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The 17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+ affinity between two binding sites that are ∼24 Šapart. The 17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the 17O nucleus to its chemical environment.


Assuntos
Gramicidina/química , Canais Iônicos/química , Espectroscopia de Ressonância Magnética/métodos , Água/química , Sítios de Ligação , Fenômenos Biofísicos , Microambiente Celular , Biologia Computacional , Ligação de Hidrogênio , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Isótopos de Oxigênio/metabolismo
10.
Angew Chem Int Ed Engl ; 62(14): e202218094, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744674

RESUMO

Metal coordination compound (MCC) glasses [e.g., metal-organic framework (MOF) glass, coordination polymer glass, and metal inorganic-organic complex (MIOC) glass] are emerging members of the hybrid glass family. So far, a limited number of crystalline MCCs can be converted into glasses by melt-quenching. Here, we report a universal wet-chemistry method, by which the super-sized supramolecular MIOC glasses can be synthesized from non-meltable MOFs. Alcohol and acid were used as agents to inhibit crystallization. The MIOC glasses demonstrate unique features including high transparency, shaping capability, and anisotropic network. Directional photoluminescence with a large polarization ratio (≈47 %) was observed from samples doped with organic dyes. This crystallization-suppressing approach enables fabrication of super-sized MCC glasses, which cannot be achieved by conventional vitrification methods, and thus allows for exploring new MCC glasses possessing photonic functionalities.

11.
J Am Chem Soc ; 144(37): 16916-16929, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36044727

RESUMO

Current needs for extending zeolite catalysts beyond traditional gas-phase hydrocarbon chemistry demand detailed characterization of active site structures, distributions, and hydrothermal impacts. A broad suite of homonuclear and heteronuclear NMR correlation experiments on dehydrated H-ZSM-5 catalysts with isotopically enriched 17O frameworks reveals that at least two types of paired active sites exist, the amount of which depends on the population of fully framework-coordinated tetrahedral Al (Al(IV)-1) and partially framework-coordinated tetrahedral Al (Al(IV)-2) sites, both of which can be denoted as (SiO)4-n-Al(OH)n. The relative amounts of Al(IV)-1 and Al(IV)-2 sites, and subsequent pairing, cannot be inferred from the catalyst Si/Al ratio, but depend on synthetic and postsynthetic modifications. Correlation experiments demonstrate that, on average, acidic hydroxyl groups from Al(IV)-1/Al(IV)-2 pairs are closer to one another than those from Al(IV)-1/Al(IV)-1 pairs, as supported by computational DFT calculations. Through-bond and through-space polarization transfer experiments exploiting 17O nuclei reveal a number of different acidic hydroxyl groups in varying Si/Al catalysts, the relative amounts of which change following postsynthetic modifications. Using room-temperature isotopic exchange methods, it was determined that 17O was homogeneously incorporated into the zeolite framework, while 17O → 27Al polarization transfer experiments demonstrated that 17O incorporation does not occur for extra-framework AlnOm species. Data from samples exposed to controlled hydrolysis indicates that nearest neighbor Al pairs in the framework are more susceptible to hydrolytic attack. The data reported here suggest that Al(IV)-1/Al(IV)-2 paired sites are synergistic sites leading to increased reactivity in both low- and high-temperature reactions. No evidence was found for paired framework/nonframework sites.

12.
J Am Chem Soc ; 144(41): 18766-18771, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36214757

RESUMO

Boron oxide/hydroxide supported on oxidized activated carbon (B/OAC) was shown to be an inexpensive catalyst for the oxidative dehydrogenation (ODH) of propane that offers activity and selectivity comparable to boron nitride. Here, we obtain an atomistic picture of the boron oxide/hydroxide layer in B/OAC by using 35.2 T 11B and 17O solid-state NMR experiments. NMR spectra measured at 35.2 T resolve the boron and oxygen sites due to narrowing of the central-transition powder patterns. A 35.2 T 2D 11B{17O} dipolar heteronuclear correlation NMR spectrum revealed the structural connectivity between boron and oxygen atoms. The approach outlined here should be generally applicable to determine atomistic structures of heterogeneous catalysts containing quadrupolar nuclei.


Assuntos
Boro , Propano , Boro/química , Propano/química , Pós , Carvão Vegetal , Espectroscopia de Ressonância Magnética/métodos , Oxigênio , Hidróxidos , Estresse Oxidativo
13.
J Chem Phys ; 156(6): 064202, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168357

RESUMO

Recently, the T-hetero-nuclear multiple quantum coherence (T-HMQC) sequence using the TRAPDOR (transfer of population in double resonance) recoupling has been introduced for the indirect detection via protons of quadrupolar nuclei with spin I = 1 (14N) or 3/2 (35Cl) in solids at fast magic-angle spinning (MAS). The sequence is simple as it only uses four rectangular pulses and exhibits low t1-noise because the recoupling pulses are applied to the indirectly detected isotope, I. We demonstrate that this sequence is applicable for the detection via protons of spin-1/2 nuclei subject to large chemical shift anisotropy, such as 195Pt. We also report the proton detection of double-quantum (2Q) coherences of 14N nuclei using this sequence. This 2Q version is more robust to the adjustment of the magic angle and the instabilities of the MAS frequencies than its parent single-quantum (1Q) version since the 2Q coherences are not broadened by the first-order quadrupole interaction. In practice, than its 1Q counterpart for the indirect detection of 14N nuclei, the 2Q variant benefits from a slightly higher resolution and comparable sensitivity. In this article, we derive for the first time the Hamiltonian that describes the spin dynamics during the TRAPDOR recoupling. This Hamiltonian demonstrates the importance of the adiabaticity parameter as well as the role of third-order terms in the effective Hamiltonian. The effects of offsets, radio-frequency field, and recoupling time on the efficiency of the T-HMQC sequence are analyzed numerically as well as with experimental detection via protons of 195Pt nuclei in a mixture of cis- and trans-platin and that of 14N and 35Cl isotopes in l-histidine HCl.

14.
Solid State Nucl Magn Reson ; 122: 101835, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308816

RESUMO

The indirect NMR detection of quadrupolar nuclei in solids under magic-angle spinning (MAS) is possible with the through-space HMQC (heteronuclear multiple-quantum coherence) scheme incorporating the TRAPDOR (transfer of population in double-resonance) dipolar recoupling. This sequence, called T-HMQC, exhibits limited t1-noise. In this contribution, with the help of numerical simulations of spin dynamics, we show that most of the time, the fastest coherence transfer in the T-HMQC scheme is achieved when TRAPDOR recoupling employs the highest radiofrequency (rf) field compatible with the probe specifications. We also demonstrate how the indirect detection of the triple-quantum (3Q) coherences of spin-3/2 quadrupolar nuclei in solids improves the spectral resolution for these isotopes. The sequence is then called T-HMQC3. We demonstrate the gain in resolution provided by this sequence for the indirect proton detection of 35Cl nuclei in l-histidine∙HCl and l-cysteine∙HCl, as well as that of 23Na isotope in NaH2PO4. These experiments indicate that the gain in resolution depends on the relative values of the chemical and quadrupolar-induced shifts (QIS) for the different spin-3/2 species. In the case of NaH2PO4, we show that the transfer efficiency of the T-HMQC3 sequence employing an rf-field of 80 kHz with a MAS frequency of 62.5 kHz reaches 75% of that of the t1-noise eliminated (TONE) dipolar-mediated HMQC (D-HMQC) scheme.


Assuntos
Isótopos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Prótons
15.
J Am Chem Soc ; 143(17): 6669-6680, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33881305

RESUMO

The structure of aluminum-containing moieties in and within zeolite H-ZSM-5 catalysts is a complex function of the elemental composition of the catalyst, synthesis conditions, exposure to moisture, and thermal history. 27Al NMR data collected at field strengths ranging from 7.05 to 35.2 T, i.e., 1H Larmor frequencies from 300 to 1500 MHz, reveal that Al primarily exists as framework or partially coordinated framework species in commercially available dehydrated H-ZSM-5 catalysts with Si/Al ranging from 11.5 to 40. Quantitative direct-excitation and sensitivity-enhanced 27Al NMR techniques applied over the wide range of magnetic field strengths used in this study show that prior to significant hydrothermal exposure, detectable amounts of nonframework Al species do not exist. Two-dimensional 27Al multiple-quantum magic-angle spinning (MQMAS) along with 1H-27Al and 29Si-27Al dipolar correlation (D-HMQC) NMR experiments confirm this conclusion and show that generation of nonframework species following varying severities of hydrothermal exposure are clearly resolved from partially coordinated framework sites. The impact of hydration on the appearance and interpretation of conventional direct-excitation 27Al spectra, commonly used to assess framework and nonframework Al, is discussed. Aluminum sites in dehydrated catalysts, which are representative of typical operating conditions, are characterized by large quadrupole interactions and are best assigned by obtaining data at multiple field strengths. On the basis of the results here, an accurate initial assessment of Al sites in high-Al content MFI catalysts prior to any hydrothermal treatment can be used to guide reaction conditions, anticipate potential water impacts, and identify contributions from hydroxyl groups other than those associated with the framework bridging acid site.

16.
Chembiochem ; 22(5): 826-829, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058374

RESUMO

We report a general method for amino acid-type specific 17 O-labeling of recombinant proteins in Escherichia coli. In particular, we have prepared several [1-13 C,17 O]-labeled yeast ubiquitin (Ub) samples including Ub-[1-13 C,17 O]Gly, Ub-[1-13 C,17 O]Tyr, and Ub-[1-13 C,17 O]Phe using the auxotrophic E. coli strain DL39 GlyA λDE3 (aspC- tyrB- ilvE- glyA- λDE3). We have also produced Ub-[η-17 O]Tyr, in which the phenolic group of Tyr59 is 17 O-labeled. We show for the first time that 17 O NMR signals from protein terminal residues and side chains can be readily detected in aqueous solution. We also reported solid-state 17 O NMR spectra for Ub-[1-13 C,17 O]Tyr and Ub-[1-13 C,17 O]Phe obtained at an ultrahigh magnetic field, 35.2 T (1.5 GHz for 1 H). This work represents a significant advance in the field of 17 O NMR studies of proteins.


Assuntos
Escherichia coli/metabolismo , Isótopos de Oxigênio/análise , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina/genética , Ubiquitina/metabolismo
17.
Chemistry ; 27(49): 12574-12588, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34131984

RESUMO

In recent years, there has been increasing interest in developing cost-efficient, fast, and user-friendly 17 O enrichment protocols to help to understand the structure and reactivity of materials by using 17 O NMR spectroscopy. Here, we show for the first time how ball milling (BM) can be used to selectively and efficiently enrich the surface of fumed silica, which is widely used at industrial scale. Short milling times (up to 15 min) allowed modulation of the enrichment level (up to ca. 5 %) without significantly changing the nature of the material. High-precision 17 O compositions were measured at different milling times by using large-geometry secondary-ion mass spectrometry (LG-SIMS). High-resolution 17 O NMR analyses (including at 35.2 T) allowed clear identification of the signals from siloxane (Si-O-Si) and silanols (Si-OH), while DNP analyses, performed by using direct 17 O polarization and indirect 17 O{1 H} CP excitation, agreed with selective labeling of the surface. Information on the distribution of Si-OH environments at the surface was obtained from 2D 1 H-17 O D-HMQC correlations. Finally, the surface-labeled silica was reacted with titania and using 17 O DNP, their common interface was probed and Si-O-Ti bonds identified.

18.
Magn Reson Chem ; 59(9-10): 951-960, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33373086

RESUMO

Field-stepped NMR spectroscopy at up to 36 T using the series-connected hybrid (SCH) magnet at the U.S. National High Magnetic Field Laboratory is demonstrated for acquiring ultra-wideline powder spectra of nuclei with very large quadrupolar interactions. Historically, NMR evolved from the continuous-wave (cw) field-swept method in the early days to the pulsed Fourier-transform method in the modern era. Spectra acquired using field sweeping are generally considered to be equivalent to those acquired using the pulsed method. Here, it is shown that field-stepped wideline spectra of half-integer spin quadrupolar nuclei acquired using WURST/CPMG methods can be significantly different from those acquired with the frequency-stepped method commonly used with superconducting magnets. The inequivalence arises from magnetic field-dependent NMR interactions such as the anisotropic chemical shift and second-order quadrupolar interactions; the latter is often the main interaction leading to ultra-wideline powder patterns of half-integer spin quadrupolar nuclei. This inequivalence needs be taken into account to accurately and correctly determine the quadrupolar coupling and chemical shift parameters. A simulation protocol is developed for spectral fitting to facilitate analysis of field-stepped ultra-wideline NMR spectra acquired using powered magnets. A MATLAB program which implements this protocol is available on request.

19.
Magn Reson Chem ; 59(9-10): 940-950, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33305447

RESUMO

MIL-53(Al) is a member of the most extensively studied metal-organic framework (MOF) families owing to its "flexible" framework and superior stability. 17 O solid-state NMR (SSNMR) spectroscopy is an ideal site-specific characterization tool as it probes local oxygen environments. Because oxygen local structure is often altered during phase change, 17 O SSNMR can be used to follow phase transitions. However, 17 O is a challenging nucleus to study via SSNMR due to its low sensitivity and resolution arising from the very low natural abundance of 17 O isotope and its quadrupolar nature. In this work, we describe that by using 17 O isotopic enrichment and performing 17 O SSNMR experiments at an ultrahigh magnetic field of 35.2 T, all chemically and crystallographically inequivalent oxygen sites in two representative MIL-53(Al) (as-made and water adsorbed) phases can be completely resolved. The number of signals in each phase is consistent with that predicted from the space group refined from powder X-ray diffraction data. The 17 O 1D magic-angle spinning (MAS) and 2D triple-quantum MAS (3QMAS) spectra at 35.2 T furnish fine information about the host-guest interactions and the structural changes associated with phase transition. The ability to completely resolve multiple chemically and crystallographically inequivalent oxygen sites in MOFs at very high magnetic field, as illustrated in this work, significantly enhances the potential for using the NMR crystallography approach to determine crystal structures of new MOFs and verify the structures of existing MOFs obtained from refining powder X-ray diffraction data.

20.
Angew Chem Int Ed Engl ; 60(19): 10709-10715, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33751737

RESUMO

Methane dehydroaromatization (MDA) on Mo/ZSM-5 zeolite catalyst is promising for direct transformation of natural gas. Understanding the nature of active sites on Mo/ZSM-5 is a challenge for applications. Herein, using 1 H{95 Mo} double-resonance solid-state NMR spectroscopy, we identify proximate dual active sites on Mo/ZSM-5 catalyst by direct observation of internuclear spatial interaction between Brønsted acid site and Mo species in zeolite channels. The acidic proton-Mo spatial interaction is correlated with methane conversion and aromatics formation in the MDA process, an important factor in determining the catalyst activity and lifetime. The evolution of olefins and aromatics in Mo/ZSM-5 channels is monitored by detecting their host-guest interactions with both active Mo sites and Brønsted acid sites via 1 H{95 Mo} double-resonance and two-dimensional 1 H-1 H correlation NMR spectroscopy, revealing the intermediate role of olefins in hydrocarbon pool process during the MDA reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA