Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Malar J ; 21(1): 386, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528584

RESUMO

BACKGROUND: Malaria remains one of the most virulent and deadliest parasitic disease in the world, particularly in Africa and Southeast Asia. Widespread occurrence of artemisinin-resistant Plasmodium falciparum strains from the Greater Mekong Subregion is alarming. This hinders the national economies, as well as being a major drawback in the effective control and elimination of malaria worldwide. Clearly, an effective anti-malarial drug is urgently needed. METHODS: The dinuclear and mononuclear copper(II) and zinc(II) complexes were synthesized in ethanolic solution and characterized by various physical measurements (FTIR, CHN elemental analysis, solubility, ESI-MS, UV-Visible, conductivity and magnetic moment, and NMR). X-ray crystal structure of the dicopper(II) complex was determined. The in vitro haemolytic activities of these metal complexes were evaluated spectroscopically on B+ blood while the anti-malarial potency was performed in vitro on blood stage drug-sensitive Plasmodium falciparum 3D7 (Pf3D7) and artemisinin-resistant Plasmodium falciparum IPC5202 (Pf5202) with fluorescence dye. Mode of action of metal complexes were conducted to determine the formation of reactive oxygen species using PNDA and DCFH-DA dyes, JC-1 depolarization of mitochondrial membrane potential, malarial 20S proteasome inhibition with parasite lysate, and morphological studies using Giemsa and Hoechst stains. RESULTS: Copper(II) complexes showed anti-malarial potency against both Pf3D7 and Pf5202 in sub-micromolar to micromolar range. The zinc(II) complexes were effective against Pf3D7 with excellent therapeutic index but encountered total resistance against Pf5202. Among the four, the dinuclear copper(II) complex was the most potent against both strains. The zinc(II) complexes caused no haemolysis of RBC while copper(II) complexes induced increased haemolysis with increasing concentration. Further mechanistic studies of both copper(II) complexes on both Pf3D7 and Pf5202 strains showed induction of ROS, 20S malarial proteasome inhibition, loss of mitochondrial membrane potential and morphological features indicative of apoptosis. CONCLUSION: The dinuclear [Cu(phen)-4,4'-bipy-Cu(phen)](NO3)4 is highly potent and can overcome the total drug-resistance of Pf5202 towards chloroquine and artemisinin. The other three copper(II) and zinc(II) complexes were only effective towards the drug-sensitive Pf3D7, with the latter causing no haemolysis of RBC. Their mode of action involves multiple targets.


Assuntos
Antimaláricos , Artemisininas , Complexos de Coordenação , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/uso terapêutico , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Cobre/farmacologia , Cobre/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos , Malária/tratamento farmacológico , Metais , Zinco/farmacologia , Zinco/uso terapêutico , Malária Falciparum/tratamento farmacológico
2.
Angew Chem Int Ed Engl ; 60(32): 17481-17490, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33982390

RESUMO

The ability to rationally design and predictably construct crystalline solids has been the hallmark of crystal engineering research. To date, numerous examples of multicomponent crystals comprising organic molecules have been reported. However, the crystal engineering of cocrystals comprising both organic and inorganic chemical units is still poorly understood and mostly unexplored. Here, we report a new diverse set of higher-order cocrystals (HOCs) based on the structurally versatile-yet largely unexplored-phosph(V/V)azane heterosynthon building block. The novel ternary and quaternary cocrystals reported are held together by synergistic and orthogonal intermolecular interactions. Notably, the HOCs can be readily obtained either via sequential or one-pot mechanochemical methods. Computational modelling methods reveal that the HOCs are thermodynamically driven to form and that their mechanical properties strongly depend on the composition and intermolecular forces in the crystal, offering untapped potential for optimizing material properties.

3.
Inorg Chem ; 59(6): 4118-4128, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32101411

RESUMO

Carbodicarbenes (CDCs) possess two lone pairs of electrons on their central carbone C atom (Ccarbone). Coordination to a transition metal via a σ bond leaves one pair of electrons with appropriate symmetry for π donation to the metal. However, the high energy of the latter also renders the CDC ligand potentially redox-active. Herein, we explore these alternatives in the redox series [Cr(L)2]n+ and [Co(L)2]n+ (n = 2-5), where L is a tridentate ligand comprised of a central CDC and two flanking pyridine donors. To this end, all members of both redox series were synthesized and their electronic structures were investigated by using a combination of 1H NMR, Evans' NMR, IR, UV-vis, and EPR spectroscopies, SQUID magnetometry, X-ray crystallography, and density functional theory studies. Whereas [CoII(L)2]2+ is a straightforward low-spin (S = 1/2) cobalt(II) complex, the corresponding chromium complex was found to feature an electronic structure that is intermediate between the two limiting resonance forms [CrIII(L•-)(L)]2+ and [CrII(L)2]2+. In the case of the tri-, tetra-, and pentacationic complexes, the qualitatively identical electronic structures [MIII(L)2]3+, [MIII(L•+)(L)]4+, and [MIII(L•+)2]5+ were observed for both metals. Thus, the metal ions retain a 3+ oxidation state throughout, and the higher redox states contain oxidized ligands. The majority of the unpaired spin on the cation radical ligands was calculated to be localized in π-symmetry orbitals on the coordinated Ccarbone atoms. Analogous behavior was previously reported for the corresponding iron redox series and, as such, redox noninnocence in oxidized CDC and, more broadly, carbone complexes is likely widely accessible.

4.
Phys Chem Chem Phys ; 22(35): 19855-19863, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32851393

RESUMO

Polymorphism is a central phenomenon in materials science that often results in important differences of the electronic properties of organic crystals due to slight variations in intermolecular distances and positions. Although a large number of π-conjugated organic compounds can grow as polymorphs, it is necessary to have at disposal a series of several polymorphs of the same molecule to establish clear and predictive structure-property relationships. We report here on the occurrence of two solvates and three polymorphs in single crystalline form of the organic p-type semiconductor 2,2',6,6'-tetraphenyldipyranylidene (DIPO). When grown from chlorobenzene or toluene, the DIPO crystals spontaneously capture solvent molecules to form two pseudopolymorphic 1 : 1 binary solvates. Independently, three solvent-free DIPO polymorphs are obtained either from the vapor phase or from acetonitrile and benzene. Surprisingly, single crystal field-effect transistors (SC-FETs) reveal that the DIPO 1 : 1 binary solvate grown from chlorobenzene possesses a higher hole mobility (1.1 cm2 V-1 s-1) than the three solvent-free polymorphs (0.02-0.64 cm2 V-1 s-1). A refined crystallographic analysis combined with a theoretical transport model clearly shows that the higher mobility of the solvate results from an improved π-π overlap. Our observations demonstrate that solvation allows to tune the π-π overlap and transport properties of organic semiconductors by selecting appropriate solvents.

5.
Angew Chem Int Ed Engl ; 59(49): 22100-22108, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32696527

RESUMO

We have synthesized a completely new family of acyclic trimeric cyclodiphosphazane compounds comprising NH, Ni Pr, Nt Bu and NPh bridging groups. In addition, the first NH-bridged acyclic dimeric cyclophosphazane has been produced. The trimeric species display highly tuneable characteristics so that the distance between the terminal N(H)R moieties can be readily modulated by the steric bulk present in the bridging groups (ranging from ≈6 to ≈10 Å). Moreover, these species exhibit pronounced topological changes when a weak non-bonding NH⋅⋅⋅π aryl interaction is introduced. Finally, the NH-bridged chloride binding affinities have been calculated and benchmarked along with the existing experimental data available for monomeric cyclodiphosphazanes. Our results underscore these species as promising hydrogen bond donors for supramolecular host-guest applications.

6.
Chemistry ; 25(7): 1819-1823, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478866

RESUMO

A route to the synthesis of novel 5,7-diazapentacenes and some preliminary studies on their properties is reported. A single crystal X-ray diffraction study of the dihexyl derivative showed it had formed a dimer during the analysis. The materials possess lower lying frontier orbitals than pentacene and may have potential applications in organic electronic devices. This synthetic method may be applicable to the synthesis of other azaacenes.

7.
Inorg Chem ; 58(11): 7324-7334, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31081333

RESUMO

The development of metallogels widens the span of sensing activity as it opens new opportunities to develop chemosensors through metal-ligand interactions. Herein, a new nitrile-substituted 1,3,5-tricarboxamide-based gelator G4 has been fabricated and shows aggregate-induced enhanced emission (AIEE) after gelation in the presence of water. A dimethylformamide (DMF) solution of the gelator shows rapid crystallization, but addition of water to a DMF solution of gelator G4 leads to gelation at room temperature. In addition, gelator G4 was used for the formation of metallogels, and among them, the cobalt metallogel has been found to be effective for sensing l-tryptophan in the gel state through the quenching of AIEE. Interestingly, the gel is also effective in sensing bovine serum albumin protein at the nanomolar level, which contains an l-tryptophan residue. The limit of detection of Co(II)G4 for selective sensing of tryptophan has been found to be 2.4 × 10-8 M. To the best of our knowledge, there have been no reports to date of a metallogel being utilized to discriminate and selectively sense an amino acid and a protein. The gelation properties of the organic gelator molecule and metallogels have been explored through various spectroscopic tools and physicochemical experiments.


Assuntos
Técnicas de Química Analítica/instrumentação , Cobalto/química , Triptofano/análise , Dimetilformamida/química , Modelos Moleculares , Conformação Molecular , Temperatura , Fatores de Tempo , Triptofano/química , Água/química
8.
Inorg Chem ; 58(2): 1469-1480, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30608673

RESUMO

Hydrogen (H2) is a clean fuel that can potentially be a future solution for the storage of intermittent renewable energy. However, current H2 production is mainly dominated by the energy intensive steam reforming reaction, which consumes a fossil fuel, methane, and emits copious amounts of carbon dioxide as one of the byproducts. To address this challenge, we report a molecular catalyst that produces H2 from aqueous solutions, is composed of affordable, earth-abundant elements such as nickel, and has been incorporated into a system driven by visible light. Under optimized conditions, we observe a turnover number of 3880, among the best for photocatalytic H2 evolution with nickel complexes from water-methanol solutions. Through nanosecond transient absorption, electron paramagnetic resonance, and UV-vis spectroscopic measurements, and supported by density functional theory calculations, we report a detailed study of this photocatalytic H2 evolution cycle. We demonstrate that a one-electron reduced, predominantly ligand-centered, reactive Ni intermediate can be accessed under visible light irradiation using triethylamine as the sacrificial electron donor and reductive quencher of the initial photosensitizer excited state. In addition, the computational calculations suggest that the second coordination sphere ether arms can enhance the catalytic activity by promoting proton relay, similar to the mechanism among [FeFe] hydrogenases in nature. Our study can form the basis for future development of H2 evolution molecular catalysts that incorporate both ligand redox noninnocence and alternative second coordination sphere effects in artificial photosynthetic systems driven by visible light.

9.
Angew Chem Int Ed Engl ; 58(11): 3456-3460, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30629313

RESUMO

Two-dimensional lead and tin halide perovskites were prepared by intercalating the long alkyl group 1-hexadecylammonium (HDA) between the inorganic layers. We observed visible-light absorption, narrow-band photoluminescence, and nanosecond photoexcited lifetimes in these perovskites. Owing to their hydrophobicity and stability even in humid air, we applied these perovskites in the decarboxylation and dehydrogenation of indoline-2-carboxylic acids. (HDA)2 PbI4 or (HDA)2 SnI4 were investigated as photoredox catalysts for these reactions, and quantitative conversion and high yields were observed with the former.

10.
J Am Chem Soc ; 140(4): 1255-1258, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29338203

RESUMO

In the presence of a catalytic amount of heavier tetrylene dichlorides, an allenic diborene 1 undergoes a 1,3-hydrogen shift to afford a terminal diborene 2, which can be deemed a boron analogue of vinylidene dication stabilized by Lewis bases. X-ray diffraction analysis and computational studies revealed that 2 involves a conjugative interaction between the C═C and B═B π-orbitals. The reaction of 2 with ZnBr2 afforded the corresponding isolable complex 3, in which two boon centers coordinate to the Zn atom asymmetrically.

11.
J Am Chem Soc ; 140(20): 6467-6473, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29733593

RESUMO

While manipulating the helicity of nanostructures is a challenging task, it attracts great research interest on account of its crucial role in better understanding the formation mechanisms of helical systems. For the supramolecular chirality in self-assembly systems, one challenge is how to understand the origin of supramolecular chirality and inherent helicity information on nanostructures regulated by functionality-oriented stacking modes (such as J- and H-aggregation) of building blocks. Herein, two-component hydrogels were prepared by phenylalanine-based enantiomers and achiral bis(pyridinyl) derivatives, where helical nanofibers with inverse handedness as well as controllable helical pitch and diameter were readily obtained through stoichiometric coassembly of these building blocks. The helix inversion was achieved by the transition between the J- and H-aggregation of bis(pyridinyl) derivatives, which was collectively confirmed by circular dichroism, scanning electron microscopy, Fourier transform infrared spectroscopy, and single X-ray crystallography. Interestingly, the helical coassemblies with opposite handedness could be obtained not only from the enantiomeric building blocks but also from the chiral monomers with the same configurational chirality by exchanging achiral additives. This work provides insight into the origin and helicity inversion of supramolecular chirality in molecular self-assembly systems and may shine light on the precise fabrication of chiral nanostructures for potential applications in smart display devices, optoelectronics, and biological systems.

12.
Inorg Chem ; 57(12): 7113-7120, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29799728

RESUMO

A set of structural mimics of the [Fe]-hydrogenase active site comprising all the group VIII metals, viz., [M(2-NHC(O)C5H4N)(CO)2(2-S-C5H4N)], has been synthesized. They exist as a mixture of isomers in solution, and the relative stability of the isomers depends on the nature of the metal and the substituent at the 6-position of the pyridine ligand.

13.
Inorg Chem ; 57(19): 12206-12212, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198260

RESUMO

We describe the synthesis of the ruthenacyclic carbamoyl complexes [Ru(2-NHC(O)C5H3NMe)(CO)2( o,o-Me2-C6H3S)(L)] (L = H2O or MeCN), which have a labile water or acetonitrile ligand at their sixth coordination sites. Steric bulk around the ruthenium center is essential in preventing isomerization and dimerization, and embedding within papain can be achieved via coordination of its sole free cysteine residue. The observed chemistry parallels that of the natural [Fe]-hydrogenase.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Papaína/química , Rutênio/química , Dimerização , Isomerismo , Ligantes , Modelos Moleculares , Água/química
14.
Inorg Chem ; 57(22): 14035-14038, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30383376

RESUMO

Preparing low-dimensional perovskite materials with novel building units is highly desirable because such materials have already been demonstrated to show unusual physical properties. In this report, we first reported a new and unusual two-dimensional perovskite framework, [B(HIm)4]4Pb13Br38 (1), constructed from novel Lindqvist-type [Pb6Br19]7- nanoclusters. The as-prepared material shows good water resistance and chemical/heat stability. More importantly, 1 has been proven to exhibit temperature/excitation-wavelength-dependent emission. A possible mechanism has been provided.

15.
Inorg Chem ; 57(17): 10993-11004, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30125095

RESUMO

Herein we describe that oxidation reactions of the dimeric cyclophosphazanes, [{P(µ-NR)}2(µ-NR)]2, R = tBu (1), to produce a series of diagonally dioxidized products P4(µ-N tBu)6E2 [E = O (2), S (3), and Se (4)] and tetraoxidized frameworks. The latter display an unexpected C-N bond activation and cleavage to produce a series of novel phosphazane macrocyclic arrangements containing newly formed N-H bonds. Macromolecules P4(µ-N tBu)4(µ-NH)2O4 (5) and P4(µ-N tBu)3(µ-NH)3E4, E = S (6) and Se (7), dicleaved and tricleaved products, respectively, are rare examples of dimeric macrocycles containing NH bridging groups. Our theoretical and experimental studies illustrate that the extent to which these C-N bonds are cleaved can be controlled by modification of steric parameters in their synthesis, by adjusting either the steric bulk of the substituents in the parent framework or the size of the chalcogen element introduced during the oxidation process. Our findings represent new synthetic pathways for the synthesis of otherwise-elusive macrocycle arrangements within the phosphazane family.

16.
J Phys Chem A ; 122(31): 6416-6423, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30011371

RESUMO

Organic-inorganic hybrid perovskites with considerable dielectric differences near the phase transition are potential candidates as phase transition materials (PTMs). However, compared with traditional PTMs, which require multiple switchable channels, the hybrid perovskites so far show only switching behavior in dielectric constants. We herein report a new crystal design strategy and successful synthesis of a two-dimensional perovskite (C6H5C2H4NH3)2MnCl4. In this hybrid perovskite, the manganese chloride octahedron is a crystal field sensitive luminescent molecular system. The distortion level of MnCl64- also depends on temperature during the order-disorder phase transition. Hence, such a manganese octahedron-based perovskite can exhibit switching behaviors in both dielectric and optical properties. We observe a 14% decrease in optical absorption and 1.6 times increase in dielectric constant during the phase transition at 365 K. In addition, the characteristic photoluminescence decreases by 17% in intensity. Such a molecule-based crystal design paves a new way to explore multifunctional PTMs based on organic-inorganic perovskites.

17.
Angew Chem Int Ed Engl ; 57(26): 7846-7849, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29704290

RESUMO

An annulated 1,3,2,5-diazadiborinine with 14 π electrons has been synthesized and fully characterized. Experimental and computational studies revealed that this compound features a rather small HOMO-LUMO gap, which leads to enhanced reactivity towards small molecules. Thus, the 1,3,2,5-diazadiborinine readily cleaves the H-H bond of dihydrogen and an N-H bond of ammonia under mild conditions. Moreover, it reacts with 2,6-dimethylphenylisonitrile in a [4+1] cycloaddition at room temperature.

18.
Angew Chem Int Ed Engl ; 57(26): 7826-7829, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29683242

RESUMO

One-electron oxidation of 1,4,2,5-diazadiborinine 1 has been studied. While the reaction of 1 a bearing phenyl groups on the B atoms with AgAl{OC(CF3 )3 }4 afforded a complex mixture, the same oxidation reaction with 1 b featuring bulky mesityl substituents on the B atoms rendered the corresponding cation radical 2 b as an isolable species. X-ray diffraction analysis, EPR spectroscopy, and DFT calculations of 2 b revealed the delocalization of the unpaired electron over the entire π-system of 2 b, as well as a large spin density (0.76 in total) on the two equivalent boron atoms. The chemical trapping reaction of 2 b with p-benzoquinone and triphenyltin hydride afforded the dicationic species 3 containing two newly formed B-O bonds and the monocationic product 2b-H containing a B-H bond, respectively, thus confirming the boron-centered radical reactivity of 2 b.

19.
Angew Chem Int Ed Engl ; 57(48): 15717-15722, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30239076

RESUMO

To probe the possibility that carbodicarbenes (CDCs) are redox active ligands, all four members of the redox series [Fe(1)2 ]n+ (n=2-5) were synthesized, where 1 is a neutral tridentate CDC. Through a combination of spectroscopy and DFT calculations, the electronic structure of the pentacation is shown to be [FeIII (1.+ )2 ]5+ (S= 1 / 2 ). That of [Fe(1)2 ]4+ is more ambiguous, but it has significant contributions from the open-shell singlet [FeIII (1)(1.+ )]4+ (S=0). The observed spin states derive from antiferromagnetic coupling of their constituent low-spin iron(III) centres and cation radical ligands. This marks the first time redox activity has been observed for carbones and expands the diverse chemical behaviour known for these ligands.

20.
Angew Chem Int Ed Engl ; 57(41): 13555-13559, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30144255

RESUMO

Success in obtaining higher-order twistarenes with precise structures is very important for fundamentally understanding the relationship between the structures and physical properties/optoelectronic applications. In this research, by using the advantages from a retro-Diels-Alder process (clean reaction) and the cross-conjugated nature of the pyrene unit, a novel dodeca-twistarene was prepared for the first time. Its structure, confirmed by single-crystal XRD analysis, indicates that it possesses a twisted angle (≈30°), and two neighboring molecules in the crystal lattice are perpendicular to each other because of the twisted character and the strong intermolecular CH-π interactions. However, its basic physicochemical properties suggest its instability in air derives from its elevated HOMO energy level, although NICS calculations confirm that the pyrene units contribution poorly to the π conjugation of the overall molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA