Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077029

RESUMO

The design and development of analgesics with mixed-opioid receptor interactions has been reported to decrease side effects, minimizing respiratory depression and reinforcing properties to generate safer analgesic therapeutics. We synthesized bis-cyclic guanidine heterocyclic peptidomimetics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for the mu-opioid receptor (MOR), delta-opioid receptor (DOR), and kappa-opioid receptor (KOR) across the series, with compound 1968-22 displaying good affinity for all three receptors. Central intracerebroventricular (i.c.v.) administration of 1968-22 produced dose-dependent, opioid receptor-mediated antinociception in the mouse 55 °C warm-water tail-withdrawal assay, and 1968-22 also produced significant antinociception up to 80 min after oral administration (10 mg/kg, p.o.). Compound 1968-22 was detected in the brain 5 min after intravenous administration and was shown to be stable in the blood for at least 30 min. Central administration of 1968-22 did not produce significant respiratory depression, locomotor effects or conditioned place preference or aversion. The data suggest these bis-cyclic guanidine heterocyclic peptidomimetics with multifunctional opioid receptor activity may hold potential as new analgesics with fewer liabilities of use.


Assuntos
Peptidomiméticos , Insuficiência Respiratória , Analgésicos/química , Analgésicos/farmacologia , Analgésicos Opioides , Animais , Guanidina/farmacologia , Guanidinas/farmacologia , Ligantes , Camundongos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Receptores Opioides , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo
2.
Molecules ; 25(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887303

RESUMO

The macrocyclic tetrapeptide cyclo[Phe-d-Pro-Phe-Trp] (CJ-15,208) and its stereoisomer cyclo[Phe-d-Pro-Phe-d-Trp] exhibit different opioid activity profiles in vivo. The present study evaluated the influence of the Phe residues' stereochemistry on the peptides' opioid activity. Five stereoisomers were synthesized by a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance development, and place conditioning were also assessed in vivo. All of the stereoisomers exhibited antinociception following either intracerebroventricular or oral administration differentially mediated by multiple opioid receptors, with kappa opioid receptor (KOR) activity contributing for all of the peptides. However, unlike the parent peptides, KOR antagonism was exhibited by only one stereoisomer, while another isomer produced DOR antagonism. The stereoisomers of CJ-15,208 lacked significant respiratory effects, while the [d-Trp]CJ-15,208 stereoisomers did not elicit antinociceptive tolerance. Two isomers, cyclo[d-Phe-d-Pro-d-Phe-Trp] (3) and cyclo[Phe-d-Pro-d-Phe-d-Trp] (5), did not elicit either preference or aversion in a conditioned place preference assay. Collectively, these stereoisomers represent new lead compounds for further investigation in the development of safer opioid analgesics.


Assuntos
Analgésicos Opioides/farmacologia , Peptídeos Cíclicos/farmacologia , Fenilalanina/química , Analgésicos/farmacologia , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Animais , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Receptores Opioides/química , Receptores Opioides/metabolismo , Estereoisomerismo
3.
Org Biomol Chem ; 17(21): 5305-5315, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31094391

RESUMO

Numerous studies demonstrate the promise of opioid peptides as analgesics, but poor oral bioavailability has limited their therapeutic development. This study sought to increase the oral bioavailability of opioid peptides by cyclization, using Hantzsch-based macrocyclization strategies to produce two new series of cyclized DAMGO and Leu/Met-enkephalin analogs. Opioid receptor affinity and selectivity for compounds in each series were assessed in vitro with radioligand competition binding assays. Compounds demonstrated modest affinity but high selectivity for the mu, delta, and kappa opioid receptors (MOR, DOR and KOR), while selectivity for mu opioid receptors varied by structure. Antinociceptive activity of each compound was initially screened in vivo following intracerebroventricular (i.c.v.) administration and testing in the mouse 55 °C warm-water tail-withdrawal test. The four most active compounds were then evaluated for dose- and time-dependent antinociception, and opioid receptor selectivity in vivo. Cyclic compounds 1924-10, 1936-1, 1936-7, and 1936-9 produced robust and long- lasting antinociception with ED50 values ranging from 0.32-0.75 nmol following i.c.v. administration mediated primarily by mu- and delta-opioid receptor agonism. Compounds 1924-10, 1936-1 and 1936-9 further displayed significant time-dependent antinociception after oral (10 mg kg-1, p.o.) administration. A higher oral dose (30 mg kg-1. p.o.) of all four cyclic peptides also reduced centrally-mediated respiration, suggesting successful penitration into the CNS. Overall, these data suggest cyclized opioid peptides synthesized by a Hantzsch-based macrocyclization strategy can retain opioid agonist activity to produce potent antinociception in vivo while conveying improved bioavailability following oral administration.


Assuntos
Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalina Metionina/farmacologia , Receptores Opioides/agonistas , Tiazóis/farmacologia , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/química , Animais , Ciclização , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/administração & dosagem , Ala(2)-MePhe(4)-Gly(5)-Encefalina/química , Encefalina Metionina/administração & dosagem , Encefalina Metionina/química , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Taxa Respiratória , Tiazóis/administração & dosagem , Tiazóis/química
5.
J Pharmacol Exp Ther ; 346(3): 545-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23853171

RESUMO

In the mouse 55°C warm-water tail-withdrawal assay, a single administration of nor-binaltorphimine (nor-BNI; 10 mg/kg i.p.) antagonized κ-opioid receptor (KOR) agonist-induced antinociception up to 14 days, whereas naloxone (10 mg/kg i.p.)-mediated antagonism lasted less than 1 day. In saturation binding experiments, mouse brain membranes isolated and washed 1 or 7 (but not 14) days after nor-BNI administration demonstrated a significant time-dependent decrease in maximal KOR agonist [(3)H]U69,593 binding. To determine whether brain concentrations of nor-BNI were sufficient to explain the antagonism of KOR-mediated antinociception, mouse blood and perfused brain were harvested at time points ranging from 30 minutes to 21 days after a single administration and analyzed for the presence of nor-BNI using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Nor-BNI was detected in the perfused brain homogenate up to 21 days after administration (30 nmol i.c.v. or 10 mg/kg i.p.). Subsequent experiments in which nor-BNI was administered at doses estimated from the amounts detected in the brain homogenates isolated from pretreated mice over time demonstrated significant antagonism of U50,488 antinociception in a manner consistent with the magnitude of observed KOR antagonism. The dose (1.4 nmol) approximating the lowest amount of nor-BNI detected in brain on day 14 did not antagonize U50,488-induced antinociception, consistent with the absence of U50,488 antagonism observed in vivo at this time point after pretreatment. Overall, the physical presence of nor-BNI in the mouse brain paralleled its in vivo pharmacological profile, suggesting physicochemical and pharmacokinetic properties of nor-BNI may contribute to the prolonged KOR antagonism.


Assuntos
Encéfalo/metabolismo , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Benzenoacetamidas/metabolismo , Benzenoacetamidas/farmacologia , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Injeções Intraventriculares , Membranas/efeitos dos fármacos , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Naloxona/farmacocinética , Naloxona/farmacologia , Naltrexona/farmacocinética , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacocinética , Medição da Dor/efeitos dos fármacos , Pirrolidinas/metabolismo , Pirrolidinas/farmacologia , Padrões de Referência , Espectrometria de Massas em Tandem , Fatores de Tempo
6.
J Nat Prod ; 76(3): 433-8, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23327691

RESUMO

The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine-seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug-seeking behavior in abstinent subjects.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína/administração & dosagem , Peptídeos Cíclicos/farmacologia , Administração Oral , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
7.
Nat Nanotechnol ; 18(11): 1351-1363, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37443252

RESUMO

Intravenously administered cyclic dinucleotides and other STING agonists are hampered by low cellular uptake and poor circulatory half-life. Here we report the covalent conjugation of cyclic dinucleotides to poly(ß-amino ester) nanoparticles through a cathepsin-sensitive linker. This is shown to increase stability and loading, thereby expanding the therapeutic window in multiple syngeneic tumour models, enabling the study of how the long-term fate of the nanoparticles affects the immune response. In a melanoma mouse model, primary tumour clearance depends on the STING signalling by host cells-rather than cancer cells-and immune memory depends on the spleen. The cancer cells act as a depot for the nanoparticles, releasing them over time to activate nearby immune cells to control tumour growth. Collectively, this work highlights the importance of nanoparticle structure and nano-biointeractions in controlling immunotherapy efficacy.


Assuntos
Melanoma , Nanopartículas , Neoplasias , Animais , Camundongos , Polímeros/farmacologia , Neoplasias/tratamento farmacológico , Transdução de Sinais , Nanopartículas/uso terapêutico , Nanopartículas/química
8.
AAPS J ; 24(6): 107, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207468

RESUMO

The development of new antibody-drug conjugates (ADCs) has led to the approval of 7 ADCs by the FDA in 4 years. Given the impact of intratumoral distribution on efficacy of these therapeutics, coadministration of unconjugated antibody with ADC has been shown to improve distribution and efficacy of several ADCs in high and moderately expressed tumor target systems by increasing tissue penetration. However, the benefit of coadministration in low expression systems is less clear. TAK-164, an ADC composed of an anti-GCC antibody (5F9) conjugated to a DGN549 payload, has demonstrated heterogeneous distribution and bystander killing. Here, we evaluated the impact of 5F9 coadministration on distribution and efficacy of TAK-164 in a primary human tumor xenograft mouse model. Coadministration was found to improve the distribution of TAK-164 within the tumor, but it had no significant impact (increase or decrease) on efficacy. Experimental and computational evidence indicates that this was not a result of tumor saturation, increased binding to perivascular cells, or compensatory bystander effects. Rather, the cellular potency of DGN549 was matched with the single-cell uptake of TAK-164 making its IC50 close to its equilibrium binding affinity (KD), and as such, coadministration dilutes total DGN549 in cells below the maximum cytotoxic concentration, thereby offsetting an increased number of targeted cells with decreased ability to kill each cell. These results provide new insights on matching payload potency to ADC delivery to help identify when increasing tumor penetration is beneficial for improving ADC efficacy and demonstrate how mechanistic simulations can be leveraged to design clinically effective ADCs.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Anticorpos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Efeito Espectador , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacocinética , Camundongos , Neoplasias/tratamento farmacológico
9.
Neoplasia ; 23(2): 210-221, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385970

RESUMO

With the recent approval of 3 new antibody drug conjugates (ADCs) for solid tumors, this class of drugs is gaining momentum for the targeted treatment of cancer. Despite significant investment, there are still fundamental issues that are incompletely understood. Three of the recently approved ADCs contain payloads exhibiting bystander effects, where the payload can diffuse out of a targeted cell into adjacent cells. These effects are often studied using a mosaic of antigen positive and negative cells. However, the distance these payloads can diffuse in tumor tissue while maintaining a lethal concentration is unclear. Computational studies suggest bystander effects partially compensate for ADC heterogeneity in tumors in addition to targeting antigen negative cells. However, this type of study is challenging to conduct experimentally due to the low concentrations of extremely potent payloads. In this work, we use a series of 3-dimensional cell culture and primary human tumor xenograft studies to directly track fluorescently labeled ADCs and indirectly follow the payload via an established pharmacodynamic marker (γH2A. X). Using TAK-164, an anti-GCC ADC undergoing clinical evaluation, we show that the lipophilic DNA-alkylating payload, DGN549, penetrates beyond the cell targeted layer in GCC-positive tumor spheroids and primary human tumor xenograft models. The penetration distance is similar to model predictions, where the lipophilicity results in moderate tissue penetration, thereby balancing improved tissue penetration with sufficient cellular uptake to avoid significant washout. These results aid in mechanistic understanding of the interplay between antigen heterogeneity, bystander effects, and heterogeneous delivery of ADCs in the tumor microenvironment to design clinically effective therapeutics.


Assuntos
Antineoplásicos Imunológicos/farmacocinética , Efeito Espectador/efeitos dos fármacos , Imunoconjugados/farmacocinética , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Monitoramento de Medicamentos/métodos , Feminino , Imunofluorescência , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos , Camundongos Transgênicos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cancer Ther ; 19(10): 2079-2088, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788205

RESUMO

Guanylyl cyclase C (GCC) is a unique therapeutic target with expression restricted to the apical side of epithelial cell tight junctions thought to be only accessible by intravenously administered agents on malignant tissues where GCC expression is aberrant. In this study, we sought to evaluate the therapeutic potential of a second-generation investigational antibody-dug conjugate (ADC), TAK-164, comprised of a human anti-GCC mAb conjugated via a peptide linker to the highly cytotoxic DNA alkylator, DGN549. The in vitro binding, payload release, and in vitro activity of TAK-164 was characterized motivating in vivo evaluation. The efficacy of TAK-164 and the relationship to exposure, pharmacodynamic marker activation, and biodistribution was evaluated in xenograft models and primary human tumor xenograft (PHTX) models. We demonstrate TAK-164 selectively binds to, is internalized by, and has potent cytotoxic effects against GCC-expressing cells in vitro A single intravenous administration of TAK-164 (0.76 mg/kg) resulted in significant growth rate inhibition in PHTX models of metastatic colorectal cancer. Furthermore, imaging studies characterized TAK-164 uptake and activity and showed positive relationships between GCC expression and tumor uptake which correlated with antitumor activity. Collectively, our data suggest that TAK-164 is highly active in multiple GCC-positive tumors including those refractory to TAK-264, a GCC-targeted auristatin ADC. A strong relationship between uptake of 89Zr-labeled TAK-164, levels of GCC expression and, most notably, response to TAK-164 therapy in GCC-expressing xenografts and PHTX models. These data supported the clinical development of TAK-164 as part of a first-in-human clinical trial (NCT03449030).


Assuntos
Imunoconjugados/uso terapêutico , Animais , Feminino , Células HEK293 , Humanos , Imunoconjugados/farmacologia , Camundongos , Camundongos Nus , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA