Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 614(7946): 118-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697822

RESUMO

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.


Assuntos
Diabetes Mellitus Experimental , Insulina , Metabolismo dos Lipídeos , Doenças do Sistema Nervoso Periférico , Serina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Glicina/metabolismo , Insulina/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Serina/metabolismo , Dieta Hiperlipídica , Adiposidade , Esfingolipídeos/metabolismo , Neuropatia de Pequenas Fibras , Dislipidemias
2.
Proc Natl Acad Sci U S A ; 117(45): 28297-28306, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106407

RESUMO

Retinal neovascularization (NV), a leading cause of vision loss, results from localized hypoxia that stabilizes the hypoxia-inducible transcription factors HIF-1α and HIF-2α, enabling the expression of angiogenic factors and genes required to maintain homeostasis under conditions of oxygen stress. HIF transcriptional activity depends on the interaction between its intrinsically disordered C-terminal domain and the transcriptional coactivators CBP/p300. Much effort is currently directed at disrupting protein-protein interactions between disease-associated transcription factors like HIF and their cellular partners. The intrinsically disordered protein CITED2, a direct product of HIF-mediated transcription, functions as a hypersensitive negative regulator that attenuates the hypoxic response by competing allosterically with HIF-1α for binding to CBP/p300. Here, we show that a peptide fragment of CITED2 is taken up by retinal cells and efficiently regulates pathological angiogenesis in murine models of ischemic retinopathy. Both vaso-obliteration (VO) and NV were significantly inhibited in an oxygen-induced retinopathy (OIR) model following intravitreal injection of the CITED2 peptide. The CITED2 peptide localized to retinal neurons and glia, resulting in decreased expression of HIF target genes. Aflibercept, a commonly used anti-VEGF therapy for retinal neovascular diseases, rescued NV but not VO in OIR. However, a combination of the CITED2 peptide and a reduced dose of aflibercept significantly decreased both NV and VO. In contrast to anti-VEGF agents, the CITED2 peptide can rescue hypoxia-induced retinal NV by modulating the hypoxic response through direct competition with HIF for CBP/p300, suggesting a dual targeting strategy for treatment of ischemic retinal diseases and other neovascular disorders.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Hipóxia/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Neovascularização Retiniana/metabolismo , Transativadores/metabolismo , Animais , Proteína p300 Associada a E1A/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição de p300-CBP/metabolismo
3.
N Engl J Med ; 381(15): 1422-1433, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509666

RESUMO

BACKGROUND: Identifying mechanisms of diseases with complex inheritance patterns, such as macular telangiectasia type 2, is challenging. A link between macular telangiectasia type 2 and altered serine metabolism has been established previously. METHODS: Through exome sequence analysis of a patient with macular telangiectasia type 2 and his family members, we identified a variant in SPTLC1 encoding a subunit of serine palmitoyltransferase (SPT). Because mutations affecting SPT are known to cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), we examined 10 additional persons with HSAN1 for ophthalmologic disease. We assayed serum amino acid and sphingoid base levels, including levels of deoxysphingolipids, in patients who had macular telangiectasia type 2 but did not have HSAN1 or pathogenic variants affecting SPT. We characterized mice with low serine levels and tested the effects of deoxysphingolipids on human retinal organoids. RESULTS: Two variants known to cause HSAN1 were identified as causal for macular telangiectasia type 2: of 11 patients with HSAN1, 9 also had macular telangiectasia type 2. Circulating deoxysphingolipid levels were 84.2% higher among 125 patients with macular telangiectasia type 2 who did not have pathogenic variants affecting SPT than among 94 unaffected controls. Deoxysphingolipid levels were negatively correlated with serine levels, which were 20.6% lower than among controls. Reduction of serine levels in mice led to increases in levels of retinal deoxysphingolipids and compromised visual function. Deoxysphingolipids caused photoreceptor-cell death in retinal organoids, but not in the presence of regulators of lipid metabolism. CONCLUSIONS: Elevated levels of atypical deoxysphingolipids, caused by variant SPTLC1 or SPTLC2 or by low serine levels, were risk factors for macular telangiectasia type 2, as well as for peripheral neuropathy. (Funded by the Lowy Medical Research Institute and others.).


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Mutação , Telangiectasia Retiniana/genética , Serina C-Palmitoiltransferase/genética , Serina/metabolismo , Esfingolipídeos/metabolismo , Adulto , Idoso , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Exoma/genética , Feminino , Neuropatias Hereditárias Sensoriais e Autônomas/complicações , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Humanos , Metabolismo dos Lipídeos , Macula Lutea/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Telangiectasia Retiniana/complicações , Telangiectasia Retiniana/metabolismo , Fatores de Risco , Serina/sangue , Esfingosina/análogos & derivados , Esfingosina/análise , Adulto Jovem
4.
BMC Biol ; 15(1): 113, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183319

RESUMO

BACKGROUND: Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. RESULTS: We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα -/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. CONCLUSION: We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , PPAR alfa/genética , Retina/metabolismo , Neurônios Retinianos/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , PPAR alfa/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Proc Natl Acad Sci U S A ; 111(32): 11870-5, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071184

RESUMO

The coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) is widely considered a central transcriptional regulator of adaptive thermogenesis in brown adipose tissue (BAT). However, mice lacking PGC-1α specifically in adipose tissue have only mild thermogenic defects, suggesting the presence of additional regulators. Using the activity of estrogen-related receptors (ERRs), downstream effectors of PGC-1α, as read-out in a high-throughput genome-wide cDNA screen, we identify here growth arrest and DNA-damage-inducible protein 45 γ (GADD45γ) as a cold-induced activator of uncoupling protein 1 (UCP1) and oxidative capacity in BAT. Mice lacking Gadd45γ have defects in Ucp1 induction and the thermogenic response to cold. GADD45γ works by activating MAPK p38, which is a potent activator of ERRß and ERRγ transcriptional function. GADD45γ activates ERRγ independently of PGC-1 coactivators, yet synergizes with PGC-1α to induce the thermogenic program. Our findings elucidate a previously unidentified GADD45γ/p38/ERRγ pathway that regulates BAT thermogenesis and may enable new approaches for the stimulation of energy expenditure. Our study also implicates GADD45 proteins as general metabolic regulators.


Assuntos
Tecido Adiposo Marrom/fisiologia , Proteínas de Transporte/metabolismo , Termogênese/fisiologia , Aclimatação/genética , Aclimatação/fisiologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Temperatura Baixa , Metabolismo Energético , Feminino , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Canais Iônicos/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Termogênese/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115691

RESUMO

Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.


Assuntos
Retinopatia Diabética , Células-Tronco Pluripotentes Induzidas , Telangiectasia Retiniana , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Telangiectasia Retiniana/metabolismo , Telangiectasia Retiniana/patologia , Retinopatia Diabética/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Serina/metabolismo
7.
Mol Metab ; 72: 101716, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997154

RESUMO

OBJECTIVES: The non-essential amino acids serine, glycine, and alanine, as well as diverse sphingolipid species, are implicated in inherited neuro-retinal disorders and are metabolically linked by serine palmitoyltransferase (SPT), a key enzyme in membrane lipid biogenesis. To gain insight into the pathophysiological mechanisms linking these pathways to neuro-retinal diseases we compared patients diagnosed with two metabolically intertwined diseases: macular telangiectasia type II (MacTel), hereditary sensory autonomic neuropathy type 1 (HSAN1), or both. METHODS: We performed targeted metabolomic analyses of amino acids and broad sphingolipids in sera from a cohort of MacTel (205), HSAN1 (25) and Control (151) participants. RESULTS: MacTel patients exhibited broad alterations of amino acids, including changes in serine, glycine, alanine, glutamate, and branched-chain amino acids reminiscent of diabetes. MacTel patients had elevated 1-deoxysphingolipids but reduced levels of complex sphingolipids in circulation. A mouse model of retinopathy indicates dietary serine and glycine restriction can drive this depletion in complex sphingolipids. HSAN1 patients exhibited elevated serine, lower alanine, and a reduction in canonical ceramides and sphingomyelins compared to controls. Those patients diagnosed with both HSAN1 and MacTel showed the most significant decrease in circulating sphingomyelins. CONCLUSIONS: These results highlight metabolic distinctions between MacTel and HSAN1, emphasize the importance of membrane lipids in the progression of MacTel, and suggest distinct therapeutic approaches for these two neurodegenerative diseases.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Retinianas , Animais , Camundongos , Aminoácidos , Esfingomielinas , Esfingolipídeos/metabolismo , Serina/metabolismo , Alanina , Glicina
8.
Nat Metab ; 3(3): 366-377, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758422

RESUMO

Macular telangiectasia type 2 (MacTel) is a progressive, late-onset retinal degenerative disease linked to decreased serum levels of serine that elevate circulating levels of a toxic ceramide species, deoxysphingolipids (deoxySLs); however, causal genetic variants that reduce serine levels in patients have not been identified. Here we identify rare, functional variants in the gene encoding the rate-limiting serine biosynthetic enzyme, phosphoglycerate dehydrogenase (PHGDH), as the single locus accounting for a significant fraction of MacTel. Under a dominant collapsing analysis model of a genome-wide enrichment analysis of rare variants predicted to impact protein function in 793 MacTel cases and 17,610 matched controls, the PHGDH gene achieves genome-wide significance (P = 1.2 × 10-13) with variants explaining ~3.2% of affected individuals. We further show that the resulting functional defects in PHGDH cause decreased serine biosynthesis and accumulation of deoxySLs in retinal pigmented epithelial cells. PHGDH is a significant locus for MacTel that explains the typical disease phenotype and suggests a number of potential treatment options.


Assuntos
Haploinsuficiência , Fosfoglicerato Desidrogenase/genética , Telangiectasia Retiniana/genética , Serina/biossíntese , Estudos de Coortes , Humanos , Fenótipo , Epitélio Pigmentado da Retina/metabolismo
9.
Sci Data ; 6(1): 252, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672983

RESUMO

Mining of integrated public transcriptomic and ChIP-Seq (cistromic) datasets can illuminate functions of mammalian cellular signaling pathways not yet explored in the research literature. Here, we designed a web knowledgebase, the Signaling Pathways Project (SPP), which incorporates community classifications of signaling pathway nodes (receptors, enzymes, transcription factors and co-nodes) and their cognate bioactive small molecules. We then mapped over 10,000 public transcriptomic or cistromic experiments to their pathway node or biosample of study. To enable prediction of pathway node-gene target transcriptional regulatory relationships through SPP, we generated consensus 'omics signatures, or consensomes, which ranked genes based on measures of their significant differential expression or promoter occupancy across transcriptomic or cistromic experiments mapped to a specific node family. Consensomes were validated using alignment with canonical literature knowledge, gene target-level integration of transcriptomic and cistromic data points, and in bench experiments confirming previously uncharacterized node-gene target regulatory relationships. To expose the SPP knowledgebase to researchers, a web browser interface was designed that accommodates numerous routine data mining strategies. SPP is freely accessible at https://www.signalingpathways.org .


Assuntos
Bases de Dados Factuais , Transdução de Sinais , Animais , Humanos , Bases de Conhecimento , Mamíferos , Transcriptoma
10.
iScience ; 2: 221-237, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29888756

RESUMO

Adrenergic stimulation of brown adipose tissue (BAT) induces acute and long-term responses. The acute adrenergic response activates thermogenesis by uncoupling oxidative phosphorylation and enabling increased substrate oxidation. Long-term, adrenergic signaling remodels BAT, inducing adaptive transcriptional changes that expand thermogenic capacity. Here, we show that the estrogen-related receptors alpha and gamma (ERRα, ERRγ) are collectively critical effectors of adrenergically stimulated transcriptional reprogramming of BAT. Mice lacking adipose ERRs (ERRαγAd-/-) have reduced oxidative and thermogenic capacity and rapidly become hypothermic when exposed to cold. ERRαγAd-/- mice treated long term with a ß3-adrenergic agonist fail to expand oxidative or thermogenic capacity and do not increase energy expenditure in response to norepinephrine (NE). Furthermore, ERRαγAd-/- mice fed a high-fat diet do not lose weight or show improved glucose tolerance when dosed with ß3-adrenergic agonists. The molecular basis of these defects is the finding that ERRs mediate the bulk of the transcriptional response to adrenergic stimulation.

11.
Endocrinology ; 157(12): 4770-4781, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27763777

RESUMO

Brown adipose tissue (BAT) thermogenesis relies on a high abundance of mitochondria and the unique expression of the mitochondrial Uncoupling Protein 1 (UCP1), which uncouples substrate oxidation from ATP synthesis. Adrenergic stimulation of brown adipocytes activates UCP1-mediated thermogenesis; it also induces the expression of Ucp1 and other genes important for thermogenesis, thereby endowing adipocytes with higher oxidative and uncoupling capacities. Adipocyte mitochondrial biogenesis and oxidative capacity are controlled by multiple transcription factors, including the estrogen-related receptor (ERR)α. Whole-body ERRα knockout mice show decreased BAT mitochondrial content and oxidative function but normal induction of Ucp1 in response to cold. In addition to ERRα, brown adipocytes express ERRß and ERRγ, 2 nuclear receptors that are highly similar to ERRα and whose function in adipocytes is largely unknown. To gain insights into the roles of all 3 ERRs, we assessed mitochondrial function and adrenergic responses in primary brown adipocytes lacking combinations of ERRs. We show that adipocytes lacking just ERRα, the most abundant ERR, show only mild mitochondrial defects. Adipocytes lacking ERRß and ERRγ also show just mild defects. In contrast, adipocytes lacking all 3 ERRs have severe reductions in mitochondrial content and oxidative capacity. Moreover, adipocytes lacking all 3 ERRs have defects in the transcriptional and metabolic response to adrenergic stimulation, suggesting a wider role of ERRs in BAT function than previously appreciated. Our study shows that ERRs have a great capacity to compensate for each other in protecting mitochondrial function and the metabolic response to adrenergic signaling, processes vital to BAT function.


Assuntos
Adipócitos Marrons/metabolismo , Receptores de Estrogênio/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Biogênese de Organelas , Receptores de Estrogênio/genética , Transdução de Sinais/fisiologia , Receptor ERRalfa Relacionado ao Estrogênio
12.
Elife ; 52016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26978795

RESUMO

Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies.


Assuntos
Células Epiteliais/fisiologia , Hipóxia , Degeneração Macular/fisiopatologia , Células Fotorreceptoras/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Estresse Fisiológico , Animais , Modelos Animais de Doenças , Camundongos
13.
Nat Med ; 22(4): 439-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26974308

RESUMO

Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid ß-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.


Assuntos
Ácidos Graxos/metabolismo , Degeneração Macular/metabolismo , Células Fotorreceptoras/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de LDL/metabolismo , Retina/metabolismo , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Metabolismo dos Lipídeos/genética , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Oxirredução , Células Fotorreceptoras/patologia , Receptores Acoplados a Proteínas G/biossíntese , Receptores de LDL/genética , Retina/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Cancer Res ; 71(7): 2518-28, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21339306

RESUMO

Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Caderinas/biossíntese , Caderinas/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Receptor alfa de Estrogênio/metabolismo , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Camundongos SCID , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA