RESUMO
Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.
Assuntos
Tolerância Imunológica , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos , NF-kappa B , Sepse , Fatores de Transcrição , Animais , Camundongos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/imunologia , NF-kappa B/metabolismo , Sepse/imunologia , Sepse/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Hospedeiro ImunocomprometidoRESUMO
BACKGROUND: Nearly 80% of patients with pancreatic cancer suffer from glucose intolerance or diabetes. Pancreatic cancer complicated by diabetes has a more immunosuppressive tumor microenvironment (TME) and is associated with a worse prognosis. The relationship between glucose metabolism and programmed cell death-Ligand 1 (PD-L1) is close and complex. It is important to explore the regulation of high glucose on PD-L1 expression in pancreatic cancer and its effect on infiltrating immune effectors in the tumor microenvironment. METHODS: Diabetic murine models (C57BL/6) were used to reveal different immune landscape in euglycemic and hyperglycemic pancreatic tumor microenvironment. Bioinformatics, WB, iRIP [Improved RNA Binding Protein (RBP) Immunoprecipitation]-seq were used to confirm the potential regulating role of peptidyl-tRNA hydrolase 1 homolog (PTRH1) on the stability of the PD-L1 mRNA. Postoperative specimens were used to identify the expression of PD-L1 and PTRH1 in pancreatic cancer. Co-culturing T cells with pancreatic cancer cells to explore the immunosuppressive effect of pancreatic tumor cells. RESULTS: Our results revealed that a high dose of glucose enhanced the stability of the PD-L1 mRNA in pancreatic tumor cells by downregulating PTRH1 through RAS signaling pathway activation following epidermal growth factor receptor (EGFR) stimulation. PTRH1 overexpression significantly suppressed PD-L1 expression in pancreatic cells and improved the proportion and cytotoxic function of CD8+ T cells in the pancreatic TME of diabetic mice. CONCLUSIONS: PTRH1, an RBP, plays a key role in the regulation of PD-L1 by high glucose and is closely related to anti-tumor immunity in the pancreatic TME.
Assuntos
Antineoplásicos , Antígeno B7-H1 , Diabetes Mellitus Experimental , Neoplasias Pancreáticas , Animais , Camundongos , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Regulação para Baixo/genética , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Transdução de Sinais , Microambiente Tumoral , Neoplasias PancreáticasRESUMO
BACKGROUND: The current guidelines of the American Joint Committee on Cancer (AJCC) for the staging of exocrine pancreatic tumors seem inapplicable to malignant pancreatic intraductal papillary mucinous neoplasms (IPMN). Therefore, we aimed to improve the accuracy of clinical staging and prognosis for malignant IPMN by modifiing current AJCC system. METHODS: We extracted data of 2001 patients with malignant IPMN from the Surveillance, Epidemiology, and End Results database between 2000 and 2016. Of these, 1401 patients were assigned to the primary cohort and 600 patients to the validation cohort. RESULTS: In Kaplan-Meier analysis of the primary cohort, the current AJCC guidelines were unable to distinguish between certain tumor substages (IA and IB in the 7th, IB and IIA in the 8th). The modified system that we regrouped based on the median overall survival and hazard ratios, was superior in tumor stage classifications. Age > 70 years, tumors located in the body or tail, high-grade differentiated tumors, surgery, chemotherapy, and tumor, lymph node, and metastasis (TNM) stage were identified as independent predictive factors for overall survival. Compared to that of TNM-based systems, the concordance index of the clinical predictive nomogram significantly improved (0.819; 95% confidence interval, 0.805-0.833), with excellent area under the receiver operating characteristic curves (1-, 3-, and 5-year: 0.881, 0.889, and 0.879, respectively). The calibration curves also showed good agreement between prediction and actual observation. The analysis of treatment modalities revealed that surgery resulted in better survival for all resectable malignant IPMN. The analysis of chemotherapy data reveals its potential in improving the prognosis of treatment for patients with locally advanced or distant metastases. CONCLUSIONS: Our modified staging system improves the distinction of tumor stages. The nomogram was a more accurate and clinically reliable tool for prognosis prediction of patients with malignant IPMN.
Assuntos
Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Idoso , Humanos , Estadiamento de Neoplasias , Nomogramas , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , PrognósticoRESUMO
In eukaryotes, N6-methyladenosine (m6A) is the most prevalent epigenetic alteration. Methyltransferase-like 3 (METTL3) is a key player in the control of m6A, although its function in pancreatic cancer is incompletely understood. In this study, we examined the role that METTL3 plays in pancreatic cancer cell proliferation and stemness. We discovered that in pancreatic cancer cells, METTL3-mediated m6A alterations regulate ID2 as a downstream target. The stability of ID2 mRNA was decreased and m6A modification was effectively eliminated by METTL3 knockdown in pancreatic cancer cells. We also demonstrate that m6a-YTHDF2 is necessary for the METTL3-mediated stabilization of ID2 mRNA. Additionally, we show that ID2 controls the stemness molecules NANOG and SOX2 via the PI3K-AKT pathway to support pancreatic cancer growth and stemness maintenance. Our data suggest that METTL3 may post-transcriptionally upregulate ID2 expression in an m6A-YTHDF2-dependent manner to further promote the stabilization of ID2 mRNA, which may be a new target for pancreatic cancer treatment.
Assuntos
Metiltransferases , Neoplasias Pancreáticas , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatidilinositol 3-Quinases , Fatores de Transcrição , Neoplasias Pancreáticas/genética , Proliferação de Células/genética , Proteína 2 Inibidora de Diferenciação , Neoplasias PancreáticasRESUMO
Tissue-type plasminogen activator (tPA) encoded by PLAT is a major mediator that promotes fibrinolysis and prevents thrombosis. Pathogenetic mutations in PLAT associated with venous thromboembolism have rarely been reported. Here, we report the first case of a homozygous point mutation c.1411T>C (p.Y471H) in PLAT leading to thromboembolic events and conduct related functional studies. The corresponding tPA mutant protein (tPA-Y471H) and wild-type tPA (tPA-WT) were synthesized in vitro, and mutant mice (PLATH/H mice) were constructed. The molecular docking and surface plasmon resonance results indicated that the mutation impeded the hydrogen-bonding interactions between the protease domain of tPA and the kringle 4 domain of plasminogen, and the binding affinity of tPA and plasminogen was significantly reduced with a difference of one order of magnitude. mRNA half-life assay showed that the half-life of tPA-Y471H was shortened. The inferior vena cava thrombosis model showed that the rate of venous thrombosis in PLATH/H mice was 80% compared with 53% in wild-type mice. Our data suggested a novel role for the protease domain of tPA in efficient plasminogen activation, and demonstrated that this tPA mutation could reduce the fibrinolysis function of the body and lead to an increased propensity for thrombosis.
RESUMO
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis, a complicated immune response is initiated, which varies over time with sustained excessive inflammation and immunosuppression. Identifying a promising way to orchestrate sepsis-induced immunosuppression is a challenge. Myeloid-derived suppressor cells (MDSCs) comprise pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They play an important part in inhibiting innate and adaptive immune responses, and have emerged as part of the immune response in sepsis. MDSCs numbers are persistently high in sepsis patients, and associated with nosocomial infections and other adverse clinical outcomes. However, their characteristics and functional mechanisms during sepsis have not been addressed fully. Our review sheds light on the features and suppressive mechanism of MDSCs. We also review the potential applications of MDSCs as biomarkers and targets for clinical treatment of sepsis.
Assuntos
Células Supressoras Mieloides , Sepse , Humanos , Terapia de Imunossupressão , Tolerância Imunológica , MonócitosRESUMO
NLRC3 is a member of the pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) family, and plays a pivotal regulatory role in modulating the activation of immune cells. In macrophages, NLRC3 inhibits the activation of the NF-κB signaling pathway, the STING/TBK1 signaling pathway, and the formation of the inflammasome. In the context of T cells immune response, NLRC3 prevents the activation of T cells by regulating the function of dendritic cells and directly influencing the function of T cells. Different from other pattern recognition receptors, NLRC3 is more closely associated with regulatory activity than pathogens recognition, it influences the fates of cells, for example, prevents proliferation, promotes apoptosis and inhibits pyroptosis. These cellular functions regulated by NLRC3 are involved in the development processes of a variety of diseases, such as infectious disease, sterile inflammatory diseases, and cancer. However, its characteristics, function and regulatory mechanism in immune response and immune-related diseases have not been addressed fully. In this review, we elaborate the potential roles of NLRC3 from several different levels, include molecular mechanism, cellular functions in the immune-related diseases.
Assuntos
Inflamassomos , Peptídeos e Proteínas de Sinalização Intercelular , Inflamassomos/metabolismo , Imunidade , Transdução de Sinais , Receptores de Reconhecimento de PadrãoRESUMO
Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Macrophages play significant roles in host against pathogens and the immunopathogenesis of sepsis, such as phagocytosis of pathogens, secretion of cytokines, and phenotype reprogramming. However, the rapid progression of sepsis impairs macrophage function, and conventional antimicrobial and supportive treatment are not sufficient to restore dysregulated macrophages roles. Nanoparticles own unique physicochemical properties, surface functions, localized surface plasmon resonance phenomenon, passive targeting in vivo, good biocompatibility and biodegradability, are accessible for biomedical applications. Once into the body, NPs are recognized by host immune system. Macrophages are phagocytes in innate immunity dedicated to the recognition of foreign substances, including nanoparticles, with which an immune response subsequently occurs. Various design strategies, such as surface functionalization, have been implemented to manipulate the recognition of nanoparticles by monocytes/macrophages, and engulfed by them to regulate their function in sepsis, compensating for the shortcomings of sepsis traditional methods. The review summarizes the mechanism of nanomaterials targeting macrophages and recent advances in nanomedicine targeting macrophages in sepsis, which provides good insight for exploring macrophage-based nano-management in sepsis.
Assuntos
Nanopartículas , Sepse , Humanos , Macrófagos , Imunidade Inata , Fagocitose , Nanopartículas/uso terapêutico , Nanopartículas/químicaRESUMO
BACKGROUND & AIMS: Accumulating evidence strongly suggests that hyperglycemia promotes the progression of pancreatic cancer (PC). Approximately 80% of patients with PC are intolerant to hyperglycemic conditions. In this study, we define the role of Bmi1, a stemness-related oncogene, in controlling the Warburg effect, and immune suppression under hyperglycemia conditions. METHODS: The diabetes mellitus model was established by intraperitoneal injection of streptozotocin. The role of the hyperglycemia-Bmi1-HK2 axis in glycolysis-related immunosuppression was examined in both orthotopic and xenograft in vivo models. Evaluation of immune infiltrates was carried out by flow cytometry. Human PC cell lines, SW1990, BxPC-3, and CFPAC-1, were used for mechanistic in vitro studies. RESULTS: Through bioinformatics analysis, we found that hyperglycemia was strongly related to aerobic glycolysis, immunosuppression, and cancer cell stemness. High glucose condition in the tumor microenvironment promotes immune suppression by upregulating glycolysis in PC cells, which can be rescued via knockdown Bmi1 expression or after 2-deoxy-D-glucose treatment. Through gain-/loss-of-function assessments, we found that Bmi1 upregulated the expression of UPF1, which enhanced the stability of HK2 mRNA and thereby increased the expression of HK2. The role of the hyperglycemia-Bmi-HK2 pathway in the inhibition of antitumor immunity was further verified via the immune-competent and immunodeficient mice model. We also demonstrated that hyperglycemia promotes the expression of Bmi1 by elevating the intracellular acetyl-CoA levels and histone H4 acetylation levels. CONCLUSIONS: Our results suggest that the previously unreported Bmi1-UPF1-HK2 pathway contributes to PC progression and immunosuppression, which may bring in new targets for developing effective therapies to treat patients with PC.
Assuntos
Hiperglicemia , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Estreptozocina , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Neoplasias Pancreáticas/genética , Glicólise/genética , RNA Mensageiro/genética , Glucose , Camundongos Nus , Terapia de Imunossupressão , Desoxiglucose , Microambiente Tumoral , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Neoplasias PancreáticasRESUMO
Intensive care unit (ICU)-acquired infection is a common cause of poor prognosis of sepsis in the ICU. However, sepsis-associated ICU-acquired infections have not been fully characterized. The study aims to assess the risk factors and develop a model that predicts the risk of ICU-acquired infections in patients with sepsis. Methods: We retrieved data from the Medical Information Mart for Intensive Care (MIMIC) IV database. Patients were randomly divided into training and validation cohorts at a 7:3 ratio. A multivariable logistic regression model was used to identify independent risk factors that could predict ICU-acquired infection. We also assessed its discrimination and calibration abilities and compared them with classical score systems. Results: Of 16,808 included septic patients, 2,871 (17.1%) developed ICU-acquired infection. These patients with ICU-acquired infection had a 17.7% ICU mortality and 31.8% in-hospital mortality and showed a continued rise in mortality from 28 to 100 days after ICU admission. The classical Systemic Inflammatory Response Syndrome Score (SIRS), Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS), Simplified Acute Physiology Score II (SAPS II), Logistic Organ Dysfunction Score (LODS), Charlson Comorbidity Index (CCI), and Acute Physiology Score III (APS III) scores were associated with ICU-acquired infection, and cerebrovascular insufficiency, Gram-negative bacteria, surgical ICU, tracheostomy, central venous catheter, urinary catheter, mechanical ventilation, red blood cell (RBC) transfusion, LODS score and anticoagulant therapy were independent predictors of developing ICU-acquired infection in septic patients. The nomogram on the basis of these independent predictors showed good calibration and discrimination in both the derivation (AUROC = 0.737; 95% CI, 0.725-0.749) and validation (AUROC = 0.751; 95% CI, 0.734-0.769) populations and was superior to that of SIRS, SOFA, OASIS, SAPS II, LODS, CCI, and APS III models. Conclusions: ICU-acquired infections increase the likelihood of septic mortality. The individualized prognostic model on the basis of the nomogram could accurately predict ICU-acquired infection and optimize management or tailored therapy.
Assuntos
Escores de Disfunção Orgânica , Sepse , Humanos , Unidades de Terapia Intensiva , Estudos Retrospectivos , Fatores de Risco , Sepse/epidemiologiaRESUMO
BACKGROUND: Gemcitabine is the standard first-line chemotherapy regimen for pancreatic cancer. However, its therapeutic value is substantially limited in pancreatic cancer patients due to occurrence of resistance towards gemcitabine. A strategy of combined chemo-regimens is widely employed in clinical settings in attempt to reduce the chance of developing therapeutic resistance. Valproic acid (VPA) has been reported as a promising anticancer drug in various clinical trials and studies. However, the clinical value and potential dose-effect of VPA in combination with gemcitabine for pancreatic cancer treatment are under investigated. RESULTS: In this study, we determined the synergistic effect of VPA and gemcitabine and found that high-dose VPA significantly and dose-dependently enhanced the sensitivity of pancreatic cancer cells to gemcitabine. Intriguingly, low-dose VPA potentiated the migration and invasion of pancreatic cancer cells that already showed gemcitabine-induced motility. Moreover, low-dose VPA increased the reactive oxygen species (ROS) production, which activated AKT to further stimulate the activation of STAT3, Bmi1 expression and eventually promoted the migration and invasion of pancreatic cancer cells induced by gemcitabine. Whereas high-dose VPA stimulated excessive ROS accumulation that promoted p38 activation, which suppressed the activation of STAT3 and Bmi1. CONCLUSION: Pancreatic cancer cells respond differentially towards low- or high-dose of VPA in combination with gemcitabine, and a low VPA further potentiate pancreatic cancer cell to migrate and invade. Our results suggest that STAT3/Bmi1 signaling cascade, which is regulated by ROS-dependent, AKT- or p38-modulated pathways, primarily mediated the sensitivity and motility of pancreatic cancer cells towards combined gemcitabine and VPA regimen. These findings suggest a highly clinically relevant new mechanism of developing resistance against combined chemo-regimens, warranting further mechanistic and translational exploration for VPA in combination with gemcitabine and other chemotherapies.
RESUMO
BACKGROUND: Modulation of cell surface expression of MHC class I chain-related protein A/B (MICA/B) has been proven to be one of the mechanisms by which tumor cells escape from NK cell-mediated killing. Abnormal metabolic condition, such as high glucose, may create a cellular stress milieu to induce immune dysfunction. Hyperglycemia is frequently presented in the majority of pancreatic cancer patients and is associated with poor prognosis. In this study, we aimed to detect the effects of high glucose on NK cell-mediated killing on pancreatic cancer cells through reduction of MICA/B expression. METHODS: The lysis of NK cells on pancreatic cancer cells were compared at different glucose concentrations through lactate dehydrogenase release assay. Then, qPCR, Western Blot, Flow cytometry and Immunofluorescence were used to identify the effect of high glucose on expression of MICA/B, Bmi1, GATA2, phosphorylated AMPK to explore the underlying mechanisms in the process. Moreover, an animal model with diabetes mellitus was established to explore the role of high glucose on NK cell-mediated cytotoxicity on pancreatic cancer in vivo. RESULTS: In our study, high glucose protects pancreatic cancer from NK cell-mediated killing through suppressing MICA/B expression. Bmi1, a polycomb group (PcG) protein, was found to be up-regulated by high glucose, and mediated the inhibition of MICA/B expression through promoting GATA2 in pancreatic cancer. Moreover, high glucose inhibited AMP-activated protein kinase signaling, leading to high expression of Bmi1. CONCLUSION: Our findings identify that high glucose may promote the immune escape of pancreatic cancer cells under hyperglycemic tumor microenvironment. In this process, constitutive activation of AMPK-Bmi1-GATA2 axis could mediate MICA/B inhibition, which may serve as a therapeutic target for further intervention of pancreatic cancer immune evasion.