Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(4): 921-35, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114033

RESUMO

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ativação do Complemento , Complemento C1q/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Envelhecimento/imunologia , Animais , Líquido Cefalorraquidiano , Complemento C1q/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos/metabolismo , Redes e Vias Metabólicas , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Progranulinas , Sinapses/metabolismo , Tálamo/metabolismo
2.
PLoS Genet ; 16(8): e1009003, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866139

RESUMO

Sensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing as stimuli vary, such as light intensity throughout the day. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. It remains unclear whether serotonin modulates the physiology of interneurons in the optic ganglia. To address this question, we first mapped the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina. Serotonin receptor expression was found in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for spatiotemporal luminance contrast, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicated that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla neuropil is the primary site of serotonergic regulation for these neurons. Exogenous serotonin increased basal intracellular calcium in L2 terminals in layer M2 and modestly decreased the duration of visually induced calcium transients in L2 neurons following repeated dark flashes, but otherwise did not alter the calcium transients. Flies without functional 5-HT2B failed to show an increase in basal calcium in response to serotonin. 5-HT2B mutants also failed to show a change in amplitude in their response to repeated light flashes but other calcium transient parameters were relatively unaffected. While we did not detect serotonin receptor expression in L1 neurons, they, like L2, underwent serotonin-induced changes in basal calcium, presumably via interactions with other cells. These data demonstrate that serotonin modulates the physiology of interneurons involved in early visual processing in Drosophila.


Assuntos
Receptor 5-HT1B de Serotonina/genética , Receptores 5-HT1 de Serotonina/genética , Receptores 5-HT2 de Serotonina/genética , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Animais , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Interneurônios/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurotransmissores/genética , Receptores de Serotonina/genética , Serotonina/genética , Percepção Visual/genética
3.
Diabetologia ; 65(1): 173-187, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554282

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is characterised by islet amyloid and toxic oligomers of islet amyloid polypeptide (IAPP). We posed the questions, (1) does IAPP toxicity induce an islet response comparable to that in humans with type 2 diabetes, and if so, (2) what are the key transcriptional drivers of this response? METHODS: The islet transcriptome was evaluated in five groups of mice: beta cell specific transgenic for (1) human IAPP, (2) rodent IAPP, (3) human calpastatin, (4) human calpastatin and human IAPP, and (5) wild-type mice. RNA sequencing data was analysed by differential expression analysis and gene co-expression network analysis to establish the islet response to adaptation to an increased beta cell workload of soluble rodent IAPP, the islet response to increased expression of oligomeric human IAPP, and the extent to which the latter was rescued by suppression of calpain hyperactivation by calpastatin. Rank-rank hypergeometric overlap analysis was used to compare the transcriptome of islets from human or rodent IAPP transgenic mice vs humans with prediabetes or type 2 diabetes. RESULTS: The islet transcriptomes in humans with prediabetes and type 2 diabetes are remarkably similar. Beta cell overexpression of soluble rodent or oligomer-prone human IAPP induced changes in islet transcriptome present in prediabetes and type 2 diabetes, including decreased expression of genes that confer beta cell identity. Increased expression of human IAPP, but not rodent IAPP, induced islet inflammation present in prediabetes and type 2 diabetes in humans. Key mediators of the injury responses in islets transgenic for human IAPP or those from individuals with type 2 diabetes include STAT3, NF-κB, ESR1 and CTNNB1 by transcription factor analysis and COL3A1, NID1 and ZNF800 by gene regulatory network analysis. CONCLUSIONS/INTERPRETATION: Beta cell injury mediated by IAPP is a plausible mechanism to contribute to islet inflammation and dedifferentiation in type 2 diabetes. Inhibition of IAPP toxicity is a potential therapeutic target in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Amiloide/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Transgênicos , Transcriptoma/genética
4.
PLoS Genet ; 15(8): e1008295, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398187

RESUMO

The progressive failure of protein homeostasis is a hallmark of aging and a common feature in neurodegenerative disease. As the enzymes executing the final stages of autophagy, lysosomal proteases are key contributors to the maintenance of protein homeostasis with age. We previously reported that expression of granulin peptides, the cleavage products of the neurodegenerative disease protein progranulin, enhance the accumulation and toxicity of TAR DNA binding protein 43 (TDP-43) in Caenorhabditis elegans (C. elegans). In this study we show that C. elegans granulins are produced in an age- and stress-dependent manner. Granulins localize to the endolysosomal compartment where they impair lysosomal protease expression and activity. Consequently, protein homeostasis is disrupted, promoting the nuclear translocation of the lysosomal transcription factor HLH-30/TFEB, and prompting cells to activate a compensatory transcriptional program. The three C. elegans granulin peptides exhibited distinct but overlapping functional effects in our assays, which may be due to amino acid composition that results in distinct electrostatic and hydrophobicity profiles. Our results support a model in which granulin production modulates a critical transition between the normal, physiological regulation of protease activity and the impairment of lysosomal function that can occur with age and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Granulinas/metabolismo , Lisossomos/metabolismo , Doenças Neurodegenerativas/genética , Envelhecimento/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Endopeptidases/metabolismo , Regulação da Expressão Gênica , Granulinas/genética , Humanos , Doenças Neurodegenerativas/patologia , Estresse Fisiológico/genética
5.
Proc Natl Acad Sci U S A ; 115(40): 10172-10177, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30232263

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is characterized by the abnormal accumulation of amyloid plaques and hyperphosphorylated tau aggregates, as well as microgliosis. Hemizygous missense variants in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with elevated risk for developing late-onset AD. These variants are hypothesized to result in loss of function, mimicking TREM2 haploinsufficiency. However, the consequences of TREM2 haploinsufficiency on tau pathology and microglial function remain unknown. We report the effects of partial and complete loss of TREM2 on microglial function and tau-associated deficits. In vivo imaging revealed that microglia from aged TREM2-haploinsufficient mice show a greater impairment in their injury response compared with microglia from aged TREM2-KO mice. In transgenic mice expressing mutant human tau, TREM2 haploinsufficiency, but not complete loss of TREM2, increased tau pathology. In addition, whereas complete TREM2 deficiency protected against tau-mediated microglial activation and atrophy, TREM2 haploinsufficiency elevated expression of proinflammatory markers and exacerbated atrophy at a late stage of disease. The differential effects of partial and complete loss of TREM2 on microglial function and tau pathology provide important insights into the critical role of TREM2 in AD pathogenesis.


Assuntos
Doença de Alzheimer , Haploinsuficiência , Hemizigoto , Glicoproteínas de Membrana , Microglia/metabolismo , Mutação de Sentido Incorreto , Receptores Imunológicos , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microglia/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
J Biol Chem ; 294(6): 1846-1859, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30552117

RESUMO

Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by transcriptional silencing of the frataxin (FXN) gene, resulting in loss of the essential mitochondrial protein frataxin. Based on the knowledge that a GAA·TTC repeat expansion in the first intron of FXN induces heterochromatin, we previously showed that 2-aminobenzamide-type histone deacetylase inhibitors (HDACi) increase FXN mRNA levels in induced pluripotent stem cell (iPSC)-derived FRDA neurons and in circulating lymphocytes from patients after HDACi oral administration. How the reduced expression of frataxin leads to neurological and other systemic symptoms in FRDA patients remains unclear. Similar to other triplet-repeat disorders, it is unknown why FRDA affects only specific cell types, primarily the large sensory neurons of the dorsal root ganglia and cardiomyocytes. The combination of iPSC technology and genome-editing techniques offers the unique possibility to address these questions in a relevant cell model of FRDA, obviating confounding effects of variable genetic backgrounds. Here, using "scarless" gene-editing methods, we created isogenic iPSC lines that differ only in the length of the GAA·TTC repeats. To uncover the gene expression signatures due to the GAA·TTC repeat expansion in FRDA neuronal cells and the effect of HDACi on these changes, we performed RNA-seq-based transcriptomic analysis of iPSC-derived central nervous system (CNS) and isogenic sensory neurons. We found that cellular pathways related to neuronal function, regulation of transcription, extracellular matrix organization, and apoptosis are affected by frataxin loss in neurons of the CNS and peripheral nervous system and that these changes are partially restored by HDACi treatment.


Assuntos
Ataxia de Friedreich/genética , Inibidores de Histona Desacetilases/farmacologia , Neurônios/patologia , Transcriptoma , Células Cultivadas , Ataxia de Friedreich/patologia , Edição de Genes/métodos , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Neurônios/química , Expansão das Repetições de Trinucleotídeos/genética , Frataxina
7.
Hum Mol Genet ; 27(17): 2965-2977, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790959

RESUMO

Transcriptional changes in Friedreich's ataxia (FRDA), a rare and debilitating recessive Mendelian neurodegenerative disorder, have been studied in affected but inaccessible tissues-such as dorsal root ganglia, sensory neurons and cerebellum-in animal models or small patient series. However, transcriptional changes induced by FRDA in peripheral blood, a readily accessible tissue, have not been characterized in a large sample. We used differential expression, association with disability stage, network analysis and enrichment analysis to characterize the peripheral blood transcriptome and identify genes that were differentially expressed in FRDA patients (n = 418) compared with both heterozygous expansion carriers (n = 228) and controls (n = 93 739 individuals in total), or were associated with disease progression, resulting in a disease signature for FRDA. We identified a transcriptional signature strongly enriched for an inflammatory innate immune response. Future studies should seek to further characterize the role of peripheral inflammation in FRDA pathology and determine its relevance to overall disease progression.


Assuntos
Biomarcadores/sangue , Ataxia de Friedreich/sangue , Ataxia de Friedreich/genética , Redes Reguladoras de Genes , Mediadores da Inflamação/sangue , Inflamação/genética , Transcriptoma , Adulto , Estudos de Casos e Controles , Feminino , Ataxia de Friedreich/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade
8.
PLoS Genet ; 12(5): e1006046, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27176483

RESUMO

The observation that variants regulating gene expression (expression quantitative trait loci, eQTL) are at a high frequency among SNPs associated with complex traits has made the genome-wide characterization of gene expression an important tool in genetic mapping studies of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and other quantitative traits in members of 26 pedigrees from Costa Rica and Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree members. The study design enabled us to comprehensively reconstruct the genetic regulatory network in these families, provide estimates of heritability, identify eQTL, evaluate missing heritability for the eQTL, and quantify the number of different alleles contributing to any given locus. In the eQTL analysis, we utilize a recently proposed hierarchical multiple testing strategy which controls error rates regarding the discovery of functional variants. Our results elucidate the heritability and regulation of gene expression in this unique Latin American study population and identify a set of regulatory SNPs which may be relevant in future investigations of complex disease in this population. Since our subjects belong to extended families, we are able to compare traditional kinship-based estimates with those from more recent methods that depend only on genotype information.


Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Alelos , Transtorno Bipolar/patologia , Mapeamento Cromossômico , Colômbia , Costa Rica , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
9.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G848-G854, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30095296

RESUMO

The pancreatic duct gland (PDG) compartment has been proposed as a potential stem cell niche based on its coiled tubular structure embedded in mesenchyme, its proliferation and expansion in response to pancreatic injury, and the fact that it contains endocrine and exocrine epithelial cells. Little is known of the molecular signature of the PDG compartment in either a quiescent state or the potentially activated state during ß-cell stress characteristic of diabetes. To address this, we performed RNA sequencing on RNA obtained from PDGs of wild-type vs. prediabetic HIP rats, a model of type 2 diabetes. The transcriptome of the PDG compartment, compared with a library of 84 tissue types, placed PDGs midpoint between the exocrine and endocrine pancreas and closely related to seminiferous tubules, consistent with a role as a stem cell niche for the exocrine and endocrine pancreas. Standard differential expression analysis (permissive threshold P < 0.005) identified 245 genes differentially expressed in PDGs from HIP rats vs. WT rats, with overrepresentation of transcripts involved in acute inflammatory responses, regulation of cell proliferation, and tissue development, while pathway analysis pointed to enrichment of cell movement-related pathways. In conclusion, the transcriptome of the PDG compartment is consistent with a pancreatic stem cell niche that is activated by ongoing ß-cell stress signals. The documented PDG transcriptome provides potential candidates to be exploited for lineage tracing studies of this as yet little investigated compartment. NEW & NOTEWORTHY The pancreatic duct gland (PDG) compartment has been proposed as a potential stem cell niche. Transcriptome analysis of the PDG gland placed it midpoint between exocrine and endocrine tissues with adaptation toward response to inflammation and increased cell movement in a model of type 2 diabetes with ongoing ß-cell apoptosis. These findings support the proposal that PDGs may act as a pancreatic stem cell niche.


Assuntos
Células Secretoras de Insulina/metabolismo , Ductos Pancreáticos/citologia , Estado Pré-Diabético/metabolismo , Regeneração , Nicho de Células-Tronco , Estresse Fisiológico , Transcriptoma , Animais , Proliferação de Células , Humanos , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/fisiologia , Estado Pré-Diabético/patologia , Ratos
10.
Hum Mol Genet ; 24(20): 5759-74, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26231220

RESUMO

Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia. Recent evidence suggests that the protein defective in this syndrome, senataxin (SETX), functions in RNA processing to protect the integrity of the genome. To date, only patient-derived lymphoblastoid cells, fibroblasts and SETX knockdown cells were available to investigate AOA2. Recent disruption of the Setx gene in mice did not lead to neurobehavioral defects or neurodegeneration, making it difficult to study the etiology of AOA2. To develop a more relevant neuronal model to study neurodegeneration in AOA2, we derived neural progenitors from a patient with AOA2 and a control by induced pluripotent stem cell (iPSC) reprogramming of fibroblasts. AOA2 iPSC and neural progenitors exhibit increased levels of oxidative damage, DNA double-strand breaks, increased DNA damage-induced cell death and R-loop accumulation. Genome-wide expression and weighted gene co-expression network analysis in these neural progenitors identified both previously reported and novel affected genes and cellular pathways associated with senataxin dysfunction and the pathophysiology of AOA2, providing further insight into the role of senataxin in regulating gene expression on a genome-wide scale. These data show that iPSCs can be generated from patients with the autosomal recessive ataxia, AOA2, differentiated into neurons, and that both cell types recapitulate the AOA2 cellular phenotype. This represents a novel and appropriate model system to investigate neurodegeneration in this syndrome.


Assuntos
Reprogramação Celular , Modelos Animais de Doenças , Mutação , Células-Tronco Neurais/metabolismo , RNA Helicases/genética , Ataxias Espinocerebelares/congênito , Animais , Apoptose , Quebras de DNA de Cadeia Dupla , DNA Helicases , Feminino , Fibroblastos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Enzimas Multifuncionais , Neurônios/fisiologia , Estresse Oxidativo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/fisiopatologia
11.
PLoS Genet ; 10(3): e1004211, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603599

RESUMO

Little is known about how changes in DNA methylation mediate risk for human diseases including dementia. Analysis of genome-wide methylation patterns in patients with two forms of tau-related dementia--progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD)--revealed significant differentially methylated probes (DMPs) in patients versus unaffected controls. Remarkably, DMPs in PSP were clustered within the 17q21.31 region, previously known to harbor the major genetic risk factor for PSP. We identified and replicated a dose-dependent effect of the risk-associated H1 haplotype on methylation levels within the region in blood and brain. These data reveal that the H1 haplotype increases risk for tauopathy via differential methylation at that locus, indicating a mediating role for methylation in dementia pathophysiology.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Demência Frontotemporal/genética , Paralisia Supranuclear Progressiva/genética , Tauopatias/genética , Encéfalo/metabolismo , Encéfalo/patologia , Cromossomos Humanos Par 17 , Demência Frontotemporal/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Doenças Neurodegenerativas , Fatores de Risco , Paralisia Supranuclear Progressiva/patologia , Tauopatias/etiologia , Tauopatias/patologia , Proteínas tau/genética
12.
J Neurosci ; 35(2): 807-18, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589773

RESUMO

Aging is the predominant risk factor for neurodegenerative diseases. One key phenotype as the brain ages is an aberrant innate immune response characterized by proinflammation. However, the molecular mechanisms underlying aging-associated proinflammation are poorly defined. Whether chronic inflammation plays a causal role in cognitive decline in aging and neurodegeneration has not been established. Here we report a mechanistic link between chronic inflammation and aging microglia and a causal role of aging microglia in neurodegenerative cognitive deficits. We showed that SIRT1 is reduced with the aging of microglia and that microglial SIRT1 deficiency has a causative role in aging- or tau-mediated memory deficits via IL-1ß upregulation in mice. Interestingly, the selective activation of IL-1ß transcription by SIRT1 deficiency is likely mediated through hypomethylating the specific CpG sites on IL-1ß proximal promoter. In humans, hypomethylation of IL-1ß is strongly associated with chronological age and with elevated IL-1ß transcription. Our findings reveal a novel epigenetic mechanism in aging microglia that contributes to cognitive deficits in aging and neurodegenerative diseases.


Assuntos
Envelhecimento/metabolismo , Cognição , Epigênese Genética , Interleucina-1beta/metabolismo , Microglia/metabolismo , Sirtuína 1/metabolismo , Animais , Estudos de Casos e Controles , Metilação de DNA , Humanos , Interleucina-1beta/genética , Camundongos , Sirtuína 1/deficiência , Sirtuína 1/genética , Tauopatias/metabolismo , Regulação para Cima
13.
Hum Mol Genet ; 23(18): 4758-69, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24760770

RESUMO

Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ataxia/patologia , Síndrome de Cogan/genética , DNA Helicases/metabolismo , Redes Reguladoras de Genes , RNA Helicases/metabolismo , Animais , Apraxias/congênito , Ataxia/sangue , Ataxia/genética , Linhagem Celular , Cerebelo/metabolismo , DNA Helicases/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Enzimas Multifuncionais , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Helicases/genética , Análise de Sequência de RNA
14.
J Neuroinflammation ; 13(1): 136, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27256343

RESUMO

BACKGROUND: Our previous studies showed that the non-psychoactive cannabinoid, cannabidiol (CBD), ameliorates the clinical symptoms in mouse myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis model of multiple sclerosis (MS) as well as decreases the memory MOG35-55-specific T cell (TMOG) proliferation and cytokine secretion including IL-17, a key autoimmune factor. The mechanisms of these activities are currently poorly understood. METHODS: Herein, using microarray-based gene expression profiling, we describe gene networks and intracellular pathways involved in CBD-induced suppression of these activated memory TMOG cells. Encephalitogenic TMOG cells were stimulated with MOG35-55 in the presence of spleen-derived antigen presenting cells (APC) with or without CBD. mRNA of purified TMOG was then subjected to Illumina microarray analysis followed by ingenuity pathway analysis (IPA), weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) elucidation of gene interactions. Results were validated using qPCR and ELISA assays. RESULTS: Gene profiling showed that the CBD treatment suppresses the transcription of a large number of proinflammatory genes in activated TMOG. These include cytokines (Xcl1, Il3, Il12a, Il1b), cytokine receptors (Cxcr1, Ifngr1), transcription factors (Ier3, Atf3, Nr4a3, Crem), and TNF superfamily signaling molecules (Tnfsf11, Tnfsf14, Tnfrsf9, Tnfrsf18). "IL-17 differentiation" and "IL-6 and IL-10-signaling" were identified among the top processes affected by CBD. CBD increases a number of IFN-dependent transcripts (Rgs16, Mx2, Rsad2, Irf4, Ifit2, Ephx1, Ets2) known to execute anti-proliferative activities in T cells. Interestingly, certain MOG35-55 up-regulated transcripts were maintained at high levels in the presence of CBD, including transcription factors (Egr2, Egr1, Tbx21), cytokines (Csf2, Tnf, Ifng), and chemokines (Ccl3, Ccl4, Cxcl10) suggesting that CBD may promote exhaustion of memory TMOG cells. In addition, CBD enhanced the transcription of T cell co-inhibitory molecules (Btla, Lag3, Trat1, and CD69) known to interfere with T/APC interactions. Furthermore, CBD enhanced the transcription of oxidative stress modulators with potent anti-inflammatory activity that are controlled by Nfe2l2/Nrf2 (Mt1, Mt2a, Slc30a1, Hmox1). CONCLUSIONS: Microarray-based gene expression profiling demonstrated that CBD exerts its immunoregulatory effects in activated memory TMOG cells via (a) suppressing proinflammatory Th17-related transcription, (b) by promoting T cell exhaustion/tolerance, (c) enhancing IFN-dependent anti-proliferative program, (d) hampering antigen presentation, and (d) inducing antioxidant milieu resolving inflammation. These findings put forward mechanism by which CBD exerts its anti-inflammatory effects as well as explain the beneficial role of CBD in pathological memory T cells and in autoimmune diseases.


Assuntos
Canabidiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Análise de Variância , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/imunologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/farmacologia , Fragmentos de Peptídeos/farmacologia , RNA Mensageiro/metabolismo , Baço/citologia , Linfócitos T/imunologia
15.
PLoS Genet ; 9(9): e1003714, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068943

RESUMO

Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective) mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1) mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.


Assuntos
Apoptose/genética , Retículo Endoplasmático/genética , Pressão Osmótica , Estresse Fisiológico/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caspases/genética , Caspases/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Transdução de Sinais/genética
16.
Mov Disord ; 30(7): 968-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25914309

RESUMO

BACKGROUND: Machado-Joseph disease (or spinocerebellar ataxia type 3) is a late-onset polyglutamine neurodegenerative disorder caused by a mutation in the ATXN3 gene, which encodes for the ubiquitously expressed protein ataxin-3. Previous studies on cell and animal models have suggested that mutated ataxin-3 is involved in transcriptional dysregulation. Starting with a whole-transcriptome profiling of peripheral blood samples from patients and controls, we aimed to confirm abnormal expression profiles in Machado-Joseph disease and to identify promising up-regulated genes as potential candidate biomarkers of disease status. METHODS: The Illumina Human V4-HT12 array was used to measure transcriptome-wide gene expression in peripheral blood samples from 12 patients and 12 controls. Technical validation and validation in an independent set of samples were performed by quantitative real-time polymerase chain reaction (PCR). RESULTS: Based on the results from the microarray, twenty six genes, found to be up-regulated in patients, were selected for technical validation by quantitative real-time PCR (validation rate of 81% for the up-regulation trend). Fourteen of these were further tested in an independent set of 42 patients and 35 controls; 10 genes maintained the up-regulation trend (FCGR3B, CSR2RA, CLC, TNFSF14, SLA, P2RY13, FPR2, SELPLG, YIPF6, and GPR96); FCGR3B, P2RY13, and SELPLG were significantly up-regulated in patients when compared with controls. CONCLUSIONS: Our findings support the hypothesis that mutated ataxin-3 is associated with transcription dysregulation, detectable in peripheral blood cells. Furthermore, this is the first report suggesting a pool of up-regulated genes in Machado-Joseph disease that may have the potential to be used for fine phenotyping of this disease. © 2015 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph/sangue , Doença de Machado-Joseph/genética , Transcriptoma/genética , Regulação para Cima/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Açores , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Brain Behav Immun ; 49: 280-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092102

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a marked decline in cognition and memory function. Increasing evidence highlights the essential role of neuroinflammatory and immune-related molecules, including those produced at the brain barriers, on brain immune surveillance, cellular dysfunction and amyloid beta (Aß) pathology in AD. Therefore, understanding the response at the brain barriers may unravel novel pathways of relevance for the pathophysiology of AD. Herein, we focused on the study of the choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, in aging and in AD. Specifically, we used the PDGFB-APPSwInd (J20) transgenic mouse model of AD, which presents early memory decline and progressive Aß accumulation, and littermate age-matched wild-type (WT) mice, to characterize the CP transcriptome at 3, 5-6 and 11-12months of age. The most striking observation was that the CP of J20 mice displayed an overall overexpression of type I interferon (IFN) response genes at all ages. Moreover, J20 mice presented a high expression of type II IFN genes in the CP at 3months, which became lower than WT at 5-6 and 11-12months. Importantly, along with a marked memory impairment and increased glial activation, J20 mice also presented a similar overexpression of type I IFN genes in the dorsal hippocampus at 3months. Altogether, these findings provide new insights on a possible interplay between type I and II IFN responses in AD and point to IFNs as targets for modulation in cognitive decline.


Assuntos
Doença de Alzheimer/genética , Plexo Corióideo/metabolismo , Interferon Tipo I/genética , Interferon gama/genética , Transcriptoma , Envelhecimento/genética , Envelhecimento/psicologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Interferon Tipo I/líquido cefalorraquidiano , Interferon gama/líquido cefalorraquidiano , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
18.
Nature ; 462(7270): 213-7, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19907493

RESUMO

The signalling pathways controlling both the evolution and development of language in the human brain remain unknown. So far, the transcription factor FOXP2 (forkhead box P2) is the only gene implicated in Mendelian forms of human speech and language dysfunction. It has been proposed that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this two-amino-acid change occurred around the time of language emergence in humans. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here we demonstrate that these two human-specific amino acids alter FOXP2 function by conferring differential transcriptional regulation in vitro. We extend these observations in vivo to human and chimpanzee brain, and use network analysis to identify novel relationships among the differentially expressed genes. These data provide experimental support for the functional relevance of changes in FOXP2 that occur on the human lineage, highlighting specific pathways with direct consequences for human brain development and disease in the central nervous system (CNS). Because FOXP2 has an important role in speech and language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Animais , Encéfalo/citologia , Linhagem Celular , Evolução Molecular , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Humanos , Idioma , Pan troglodytes/embriologia , Pan troglodytes/genética , Pan troglodytes/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade da Espécie , Fala/fisiologia , Ativação Transcricional
19.
Neurobiol Dis ; 69: 263-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24844147

RESUMO

Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.


Assuntos
Encéfalo/efeitos dos fármacos , Colestenonas/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oximas/farmacologia , Secoesteroides/farmacologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Colestenonas/farmacocinética , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Transgênicos , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/metabolismo , Fármacos Neuroprotetores/farmacocinética , Oximas/farmacocinética , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , RNA Mensageiro/metabolismo , Secoesteroides/farmacocinética , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Transcriptoma/efeitos dos fármacos , alfa-Sinucleína/genética
20.
Hum Mol Genet ; 21(19): 4171-86, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22730494

RESUMO

RNA splicing plays a critical role in the programming of neuronal differentiation and, consequently, normal human neurodevelopment, and its disruption may underlie neurodevelopmental and neuropsychiatric disorders. The RNA-binding protein, fox-1 homolog (RBFOX1; also termed A2BP1 or FOX1), is a neuron-specific splicing factor predicted to regulate neuronal splicing networks clinically implicated in neurodevelopmental disease, including autism spectrum disorder (ASD), but only a few targets have been experimentally identified. We used RNA sequencing to identify the RBFOX1 splicing network at a genome-wide level in primary human neural stem cells during differentiation. We observe that RBFOX1 regulates a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins. Downstream alterations in gene expression define an additional transcriptional network regulated by RBFOX1 involved in neurodevelopmental pathways remarkably parallel to those affected by splicing. Several of these differentially expressed genes are further implicated in ASD and related neurodevelopmental diseases. Weighted gene co-expression network analysis demonstrates a high degree of connectivity among these disease-related genes, highlighting RBFOX1 as a key factor coordinating the regulation of both neurodevelopmentally important alternative splicing events and clinically relevant neuronal transcriptional programs in the development of human neurons.


Assuntos
Processamento Alternativo , Encéfalo/embriologia , Redes Reguladoras de Genes , Células-Tronco Neurais/citologia , Neurogênese , Proteínas de Ligação a RNA/metabolismo , Feto Abortado , Encéfalo/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA