Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2400845, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881161

RESUMO

Na2Ti3O7-based anodes show great promise for Na+ storage in sodium-ion batteries (SIBs), though the effect of Na2Ti3O7 morphology on battery performance remains poorly understood. Herein, hydrothermal syntheses is used to prepare free-standing Na2Ti3O7 nanosheets or Na2Ti3O7 nanotubes on Ti foil substrates, with the structural and electrochemical properties of the resulting electrodes explored in detail. Results show that the Na2Ti3O7 nanosheet electrode (NTO NSs) delivered superior performance in terms of reversible capacity, rate capability, and especially long-term durability in SIBs compared to its nanotube counterpart (NTO NTs). Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations, combined with density functional theory calculations, demonstrated that the flexible 2D Na2Ti3O7 nanosheets are mechanically more robust than the rigid Na2Ti3O7 nanotube arrays during prolonged battery cycling, explaining the superior durability of the NTO NSs electrode. This work prompts the use of anodes based on Na2Ti3O7 nanosheets in the future development of high-performance SIBs.

2.
Adv Sci (Weinh) ; 11(5): e2305479, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044326

RESUMO

Calcium-magnesium-aluminium-silicate (CMAS) attack is a longstanding challenge for yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) particularly at higher engine operating temperature. Here, a novel microstructural design is reported for YSZ TBCs to mitigate CMAS attack. The design is based on a drip coating method that creates a thin layer of nanoporous Al2 O3 around YSZ columnar grains produced by electron beam physical vapor deposition (EB-PVD). The nanoporous Al2 O3 enables fast crystallization of CMAS melt close to the TBC surface, in the inter-columnar gaps, and on the column walls, thereby suppressing CMAS infiltration and preventing further degradation of the TBCs due to CMAS attack. Indentation and three-point beam bending tests indicate that the highly porous Al2 O3 only slightly stiffens the TBC but offers superior resistance against sintering in long-term thermal exposure by reducing the intercolumnar contact. This work offers a new pathway for designing novel TBC architecture with excellent CMAS resistance, strain tolerance, and sintering resistance, which also points out new insight for assembly nanoporous ceramic in traditional ceramic structure for integrated functions.

3.
ACS Appl Mater Interfaces ; 15(4): 5071-5085, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656149

RESUMO

Donor-doped TiO2-based materials are promising thermoelectrics (TEs) due to their low cost and high stability at elevated temperatures. Herein, high-performance Nb-doped TiO2 thick films are fabricated by facile and scalable screen-printing techniques. Enhanced TE performance has been achieved by forming high-density crystallographic shear (CS) structures. All films exhibit the same matrix rutile structure but contain different nano-sized defect structures. Typically, in films with low Nb content, high concentrations of oxygen-deficient {121} CS planes are formed, while in films with high Nb content, a high density of twin boundaries are found. Through the use of strongly reducing atmospheres, a novel Al-segregated {210} CS structure is formed in films with higher Nb content. By advanced aberration-corrected scanning transmission electron microscopy techniques, we reveal the nature of the {210} CS structure at the nano-scale. These CS structures contain abundant oxygen vacancies and are believed to enable energy-filtering effects, leading to simultaneous enhancement of both the electrical conductivity and Seebeck coefficients. The optimized films exhibit a maximum power factor of 4.3 × 10-4 W m-1 K-2 at 673 K, the highest value for TiO2-based TE films at elevated temperatures. Our modulation strategy based on microstructure modification provides a novel route for atomic-level defect engineering which should guide the development of other TE materials.

4.
ACS Appl Mater Interfaces ; 13(48): 57326-57340, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34844406

RESUMO

Donor-doped TiO2 ceramics are promising high-temperature oxide thermoelectrics. Highly dense (1 - x)TiO2-xNb2O5 (0.005 ≤ x ≤ 0.06) ceramics were prepared by a single-step, mixed-oxide route under reducing conditions. The microstructures contained polygonal-shaped grains with uniform grain size distributions. Subgrain structures were formed in samples with low Nb contents by the interlacing of rutile and higher-order Magnéli phases, reflecting the high density of shear planes and oxygen vacancies. Samples prepared with a higher Nb content showed no subgrain structures but high densities of planar defects and lower concentrations of oxygen vacancies. Through optimizing the concentration of point defects and line defects, the carrier concentration and electrical conductivity were enhanced, yielding a much improved power factor of 5.3 × 10-4 W m-1 K-2 at 823 K; lattice thermal conductivity was significantly reduced by enhanced phonon scattering. A low, temperature-stable thermal conductivity of 2.6 W m-1 K-1 was achieved, leading to a ZT value of 0.17 at 873 K for compositions with x = 0.06, the highest ZT value reported for single Nb-doped TiO2 ceramics without the use of spark plasma sintering (SPS). We demonstrate the control of the thermoelectric properties of Nb-doped TiO2 ceramics through the development of balanced defect structures, which could guide the development of future oxide thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA