Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 241: 118425, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303795

RESUMO

Cascading high-amplitude bursts in neural activity, termed avalanches, are thought to provide insight into the complex spatially distributed interactions in neural systems. In human neuroimaging, for example, avalanches occurring during resting-state show scale-invariant dynamics, supporting the hypothesis that the brain operates near a critical point that enables long range spatial communication. In fact, it has been suggested that such scale-invariant dynamics, characterized by a power-law distribution in these avalanches, are universal in neural systems and emerge through a common mechanism. While the analysis of avalanches and subsequent criticality is increasingly seen as a framework for using complex systems theory to understand brain function, it is unclear how the framework would account for the omnipresent cognitive variability, whether across individuals or tasks. To address this, we analyzed avalanches in the EEG activity of healthy humans during rest as well as two distinct task conditions that varied in cognitive demands and produced behavioral measures unique to each individual. In both rest and task conditions we observed that avalanche dynamics demonstrate scale-invariant characteristics, but differ in their specific features, demonstrating individual variability. Using a new metric we call normalized engagement, which estimates the likelihood for a brain region to produce high-amplitude bursts, we also investigated regional features of avalanche dynamics. Normalized engagement showed not only the expected individual and task dependent variability, but also scale-specificity that correlated with individual behavior. Our results suggest that the study of avalanches in human brain activity provides a tool to assess cognitive variability. Our findings expand our understanding of avalanche features and are supportive of the emerging theoretical idea that the dynamics of an active human brain operate close to a critical-like region and not a singular critical-state.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Emoções/fisiologia , Desempenho Psicomotor/fisiologia , Descanso/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos
2.
Proc Natl Acad Sci U S A ; 114(20): 5153-5158, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28465434

RESUMO

Social ties are crucial for humans. Disruption of ties through social exclusion has a marked effect on our thoughts and feelings; however, such effects can be tempered by broader social network resources. Here, we use fMRI data acquired from 80 male adolescents to investigate how social exclusion modulates functional connectivity within and across brain networks involved in social pain and understanding the mental states of others (i.e., mentalizing). Furthermore, using objectively logged friendship network data, we examine how individual variability in brain reactivity to social exclusion relates to the density of participants' friendship networks, an important aspect of social network structure. We find increased connectivity within a set of regions previously identified as a mentalizing system during exclusion relative to inclusion. These results are consistent across the regions of interest as well as a whole-brain analysis. Next, examining how social network characteristics are associated with task-based connectivity dynamics, we find that participants who showed greater changes in connectivity within the mentalizing system when socially excluded by peers had less dense friendship networks. This work provides insight to understand how distributed brain systems respond to social and emotional challenges and how such brain dynamics might vary based on broader social network characteristics.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Comportamento Social , Apoio Social , Teoria da Mente/fisiologia , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Emoções/fisiologia , Humanos , Masculino
3.
Proc IEEE Inst Electr Electron Eng ; 106(5): 846-867, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30559531

RESUMO

The human brain can be represented as a graph in which neural units such as cells or small volumes of tissue are heterogeneously connected to one another through structural or functional links. Brain graphs are parsimonious representations of neural systems that have begun to offer fundamental insights into healthy human cognition, as well as its alteration in disease. A critical open question in network neuroscience lies in how neural units cluster into densely interconnected groups that can provide the coordinated activity that is characteristic of perception, action, and adaptive behaviors. Tools that have proven particularly useful for addressing this question are community detection approaches, which can identify communities or modules: groups of neural units that are densely interconnected with other units in their own group but sparsely interconnected with units in other groups. In this paper, we describe a common community detection algorithm known as modularity maximization, and we detail its applications to brain graphs constructed from neuroimaging data. We pay particular attention to important algorithmic considerations, especially in recent extensions of these techniques to graphs that evolve in time. After recounting a few fundamental insights that these techniques have provided into brain function, we highlight potential avenues of methodological advancements for future studies seeking to better characterize the patterns of coordinated activity in the brain that accompany human behavior. This tutorial provides a naive reader with an introduction to theoretical considerations pertinent to the generation of brain graphs, an understanding of modularity maximization for community detection, a resource of statistical measures that can be used to characterize community structure, and an appreciation of the usefulness of these approaches in uncovering behaviorally-relevant network dynamics in neuroimaging data.

4.
Neuroimage ; 150: 239-249, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238938

RESUMO

Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band.


Assuntos
Condução de Veículo , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Comportamento/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
5.
Proc IEEE Inst Electr Electron Eng ; 105(1): 83-100, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28713174

RESUMO

In the last few decades, non-invasive neuroimaging has revealed macro-scale brain dynamics that underlie perception, cognition and action. Advances in non-invasive neuroimaging target two capabilities; 1) increased spatial and temporal resolution of measured neural activity, and 2) innovative methodologies to extract brain-behavior relationships from evolving neuroimaging technology. We target the second. Our novel methodology integrated three neuroimaging methodologies and elucidated expertise-dependent differences in functional (fused EEG-fMRI) and structural (dMRI) brain networks for a perception-action coupling task. A set of baseball players and controls performed a Go/No-Go task designed to mimic the situation of hitting a baseball. In the functional analysis, our novel fusion methodology identifies 50ms windows with predictive EEG neural correlates of expertise and fuses these temporal windows with fMRI activity in a whole-brain 2mm voxel analysis, revealing time-localized correlations of expertise at a spatial scale of millimeters. The spatiotemporal cascade of brain activity reflecting expertise differences begins as early as 200ms after the pitch starts and lasting up to 700ms afterwards. Network differences are spatially localized to include motor and visual processing areas, providing evidence for differences in perception-action coupling between the groups. Furthermore, an analysis of structural connectivity revealed that the players have significantly more connections between cerebellar and left frontal/motor regions, and many of the functional activation differences between the groups are located within structurally defined network modules that differentiate expertise. In short, our novel method illustrates how multimodal neuroimaging can provide specific macro-scale insights into the functional and structural correlates of expertise development.

6.
Hum Brain Mapp ; 37(12): 4454-4471, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27448098

RESUMO

Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.


Assuntos
Beisebol/fisiologia , Encéfalo/fisiologia , Atividade Motora/fisiologia , Competência Profissional , Adolescente , Adulto , Atletas , Beisebol/psicologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Imagem de Tensor de Difusão , Eletroencefalografia , Humanos , Inibição Psicológica , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Oxigênio/sangue , Prática Psicológica , Descanso , Adulto Jovem
7.
J Neurosci ; 34(1): 112-23, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381272

RESUMO

Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention.


Assuntos
Atenção/fisiologia , Potenciais Evocados Visuais/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
9.
J Neurophysiol ; 109(9): 2364-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23390315

RESUMO

In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.


Assuntos
Atenção/fisiologia , Percepção Espacial , Adulto , Encéfalo/fisiologia , Potenciais Evocados Visuais , Feminino , Fusão Flicker , Humanos , Masculino , Fatores de Tempo
10.
J Neurosci Methods ; 387: 109808, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738848

RESUMO

BACKGROUND: Multivariate pattern analysis (MVPA or pattern decoding) has attracted considerable attention as a sensitive analytic tool for investigations using functional magnetic resonance imaging (fMRI) data. With the introduction of MVPA, however, has come a proliferation of methodological choices confronting the researcher, with few studies to date offering guidance from the vantage point of controlled datasets detached from specific experimental hypotheses. NEW METHOD: We investigated the impact of four data processing steps on support vector machine (SVM) classification performance aimed at maximizing information capture in the presence of common noise sources. The four techniques included: trial averaging (classifying on separate trial estimates versus condition-based averages), within-run mean centering (centering the data or not), method of cost selection (using a fixed or tuned cost value), and motion-related denoising approach (comparing no denoising versus a variety of nuisance regressions capturing motion-related reference signals). The impact of these approaches was evaluated on real fMRI data from two control ROIs, as well as on simulated pattern data constructed with carefully controlled voxel- and trial-level noise components. RESULTS: We find significant improvements in classification performance across both real and simulated datasets with run-wise trial averaging and mean centering. When averaging trials within conditions of each run, we note a simultaneous increase in the between-subject variability of SVM classification accuracies which we attribute to the reduced size of the test set used to assess the classifier's prediction error. Therefore, we propose a hybrid technique whereby randomly sampled subsets of trials are averaged per run and demonstrate that it helps mitigate the tradeoff between improving signal-to-noise ratio by averaging and losing exemplars in the test set. COMPARISON WITH EXISTING METHODS: Though a handful of empirical studies have employed run-based trial averaging, mean centering, or their combination, such studies have done so without theoretical justification or rigorous testing using control ROIs. CONCLUSIONS: Therefore, we intend this study to serve as a practical guide for researchers wishing to optimize pattern decoding without risk of introducing spurious results.


Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Análise Multivariada , Máquina de Vetores de Suporte , Encéfalo
11.
PLoS One ; 18(3): e0283418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952490

RESUMO

Previous neurofeedback research has shown training-related frontal theta increases and performance improvements on some executive tasks in real feedback versus sham control groups. However, typical sham control groups receive false or non-contingent feedback, making it difficult to know whether observed differences between groups are associated with accurate contingent feedback or other cognitive mechanisms (motivation, control strategies, attentional engagement, fatigue, etc.). To address this question, we investigated differences between two frontal theta training groups, each receiving accurate contingent feedback, but with different top-down goals: (1) increase and (2) alternate increase/decrease. We hypothesized that the increase group would exhibit greater increases in frontal theta compared to the alternate group, which would exhibit lower frontal theta during down- versus up-modulation blocks over sessions. We also hypothesized that the alternate group would exhibit greater performance improvements on a Go-NoGo shooting task requiring alterations in behavioral activation and inhibition, as the alternate group would be trained with greater task specificity, suggesting that receiving accurate contingent feedback may be the more salient learning mechanism underlying frontal theta neurofeedback training gains. Thirty young healthy volunteers were randomly assigned to increase or alternate groups. Training consisted of an orientation session, five neurofeedback training sessions (six blocks of six 30-s trials of FCz theta modulation (4-7 Hz) separated by 10-s rest intervals), and six Go-NoGo testing sessions (four blocks of 90 trials in both Low and High time-stress conditions). Multilevel modeling revealed greater frontal theta increases in the alternate group over training sessions. Further, Go-NoGo task performance increased at a greater rate in the increase group (accuracy and reaction time, but not commission errors). Overall, these results reject our hypotheses and suggest that changes in frontal theta and performance outcomes were not explained by reinforcement learning afforded by accurate contingent feedback. We discuss our findings in terms of alternative conceptual and methodological considerations, as well as limitations of this research.


Assuntos
Neurorretroalimentação , Humanos , Atenção/fisiologia , Eletroencefalografia , Neurorretroalimentação/métodos , Estudo de Prova de Conceito , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Ritmo Teta/fisiologia
12.
Netw Neurosci ; 7(1): 102-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334002

RESUMO

Sleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking.

13.
Sci Rep ; 13(1): 6699, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095180

RESUMO

Network neuroscience provides important insights into brain function by analyzing complex networks constructed from diffusion Magnetic Resonance Imaging (dMRI), functional MRI (fMRI) and Electro/Magnetoencephalography (E/MEG) data. However, in order to ensure that results are reproducible, we need a better understanding of within- and between-subject variability over long periods of time. Here, we analyze a longitudinal, 8 session, multi-modal (dMRI, and simultaneous EEG-fMRI), and multiple task imaging data set. We first confirm that across all modalities, within-subject reproducibility is higher than between-subject reproducibility. We see high variability in the reproducibility of individual connections, but observe that in EEG-derived networks, during both rest and task, alpha-band connectivity is consistently more reproducible than connectivity in other frequency bands. Structural networks show a higher reliability than functional networks across network statistics, but synchronizability and eigenvector centrality are consistently less reliable than other network measures across all modalities. Finally, we find that structural dMRI networks outperform functional networks in their ability to identify individuals using a fingerprinting analysis. Our results highlight that functional networks likely reflect state-dependent variability not present in structural networks, and that the type of analysis should depend on whether or not one wants to take into account state-dependent fluctuations in connectivity.


Assuntos
Encéfalo , Rede Nervosa , Humanos , Reprodutibilidade dos Testes , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
14.
Brain Commun ; 4(5): fcac234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36196085

RESUMO

Dynamic functional brain connectivity facilitates adaptive cognition and behaviour. Abnormal alterations within such connectivity could result in disrupted functions observed across various neurological conditions. As one of the most common neurological disorders, epilepsy is defined by the seemingly random occurrence of spontaneous seizures. A central but unresolved question concerns the mechanisms by which extraordinarily diverse propagation dynamics of seizures emerge. Here, we applied a graph-theoretical approach to assess dynamic reconfigurations in the functional brain connectivity before, during and after seizures that display heterogeneous propagation patterns despite sharing similar cortical onsets. We computed time-varying functional brain connectivity networks from human intracranial recordings of 67 seizures (across 14 patients) that had a focal origin-49 of these focal seizures remained focal and 18 underwent a bilateral spread (focal to bilateral tonic-clonic seizures). We utilized functional connectivity networks estimated from interictal periods across patients as control. Our results characterize network features that quantify the underlying functional dynamics associated with the observed heterogeneity of seizure propagation across these two types of focal seizures. Decoding these network features demonstrate that bilateral propagation of seizure activity is an outcome of the imbalance of global integration and segregation in the brain prior to seizure onset. We show that there exist intrinsic network signatures preceding seizure onset that are associated with the extent to which an impending seizure will propagate throughout the brain (i.e. staying within one hemisphere versus spreading transcallosally). Additionally, these features characterize an increase in segregation and a decrease in excitability within the brain network (i.e. high modularity and low spectral radius). Importantly, seizure-type-specific differences in these features emerge several minutes prior to seizure onset, suggesting the potential utility of such measures in intervention strategies. Finally, our results reveal network characteristics after the onset that are unique to the propagation mechanisms of two most common focal seizure subtypes, indicative of distinct reconfiguration processes that may assist termination of each seizure type. Together, our findings provide insights into the relationship between the temporal evolution of seizure activity and the underlying functional connectivity dynamics. These results offer exciting avenues where graph-theoretical measures could potentially guide personalized clinical interventions for epilepsy and other neurological disorders in which extensive heterogeneity is observed across subtypes as well as across and within individual patients.

15.
J Neurophysiol ; 106(4): 1734-46, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21715670

RESUMO

Single pulses of transcranial magnetic stimulation (TMS) result in distal and long-lasting oscillations, a finding directly challenging the virtual lesion hypothesis. Previous research supporting this finding has primarily come from stimulation of the motor cortex. We have used single-pulse TMS with simultaneous EEG to target seven brain regions, six of which belong to the visual system [left and right primary visual area V1, motion-sensitive human middle temporal cortex, and a ventral temporal region], as determined with functional MRI-guided neuronavigation, and a vertex "control" site to measure the network effects of the TMS pulse. We found the TMS-evoked potential (TMS-EP) over visual cortex consists mostly of site-dependent theta- and alphaband oscillations. These site-dependent oscillations extended beyond the stimulation site to functionally connected cortical regions and correspond to time windows where the EEG responses maximally diverge (40, 200, and 385 ms). Correlations revealed two site-independent oscillations ∼350 ms after the TMS pulse: a theta-band oscillation carried by the frontal cortex, and an alpha-band oscillation over parietal and frontal cortical regions. A manipulation of stimulation intensity at one stimulation site (right hemisphere V1-V3) revealed sensitivity to the stimulation intensity at different regions of cortex, evidence of intensity tuning in regions distal to the site of stimulation. Together these results suggest that a TMS pulse applied to the visual cortex has a complex effect on brain function, engaging multiple brain networks functionally connected to the visual system with both invariant and site-specific spatiotemporal dynamics. With this characterization of TMS, we propose an alternative to the virtual lesion hypothesis. Rather than a technique that simulates lesions, we propose TMS generates natural brain signals and engages functional networks.


Assuntos
Potenciais Evocados Visuais/fisiologia , Lobo Frontal/fisiologia , Modelos Neurológicos , Lobo Parietal/fisiologia , Estimulação Magnética Transcraniana , Córtex Visual/fisiologia , Adulto , Ritmo alfa , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Ritmo Teta , Adulto Jovem
16.
Sci Rep ; 11(1): 11196, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045543

RESUMO

Word of mouth recommendations influence a wide range of choices and behaviors. What takes place in the mind of recommendation receivers that determines whether they will be successfully influenced? Prior work suggests that brain systems implicated in assessing the value of stimuli (i.e., subjective valuation) and understanding others' mental states (i.e., mentalizing) play key roles. The current study used neuroimaging and natural language classifiers to extend these findings in a naturalistic context and tested the extent to which the two systems work together or independently in responding to social influence. First, we show that in response to text-based social media recommendations, activity in both the brain's valuation system and mentalizing system was associated with greater likelihood of opinion change. Second, participants were more likely to update their opinions in response to negative, compared to positive, recommendations, with activity in the mentalizing system scaling with the negativity of the recommendations. Third, decreased functional connectivity between valuation and mentalizing systems was associated with opinion change. Results highlight the role of brain regions involved in mentalizing and positive valuation in recommendation propagation, and further show that mentalizing may be particularly key in processing negative recommendations, whereas the valuation system is relevant in evaluating both positive and negative recommendations.


Assuntos
Encéfalo/fisiologia , Mentalização/fisiologia , Influência dos Pares , Mídias Sociais , Percepção Social , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Processamento de Linguagem Natural
17.
Sci Rep ; 11(1): 18530, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521862

RESUMO

Human error has been implicated as a causal factor in a large proportion of road accidents. Automated driving systems purport to mitigate this risk, but self-driving systems that allow a driver to entirely disengage from the driving task also require the driver to monitor the environment and take control when necessary. Given that sleep loss impairs monitoring performance and there is a high prevalence of sleep deficiency in modern society, we hypothesized that supervising a self-driving vehicle would unmask latent sleepiness compared to manually controlled driving among individuals following their typical sleep schedules. We found that participants felt sleepier, had more involuntary transitions to sleep, had slower reaction times and more attentional failures, and showed substantial modifications in brain synchronization during and following an autonomous drive compared to a manually controlled drive. Our findings suggest that the introduction of partial self-driving capabilities in vehicles has the potential to paradoxically increase accident risk.

18.
Sci Rep ; 10(1): 14890, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913263

RESUMO

Visual attentive tracking requires a balance of excitation and inhibition across large-scale frontoparietal cortical networks. Using methods borrowed from network science, we characterize the induced changes in network dynamics following low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) as an inhibitory noninvasive brain stimulation protocol delivered over the intraparietal sulcus. When participants engaged in visual tracking, we observed a highly stable network configuration of six distinct communities, each with characteristic properties in node dynamics. Stimulation to parietal cortex had no significant impact on the dynamics of the parietal community, which already exhibited increased flexibility and promiscuity relative to the other communities. The impact of rTMS, however, was apparent distal from the stimulation site in lateral prefrontal cortex. rTMS temporarily induced stronger allegiance within and between nodal motifs (increased recruitment and integration) in dorsolateral and ventrolateral prefrontal cortex, which returned to baseline levels within 15 min. These findings illustrate the distributed nature by which inhibitory rTMS perturbs network communities and is preliminary evidence for downstream cortical interactions when using noninvasive brain stimulation for behavioral augmentations.


Assuntos
Atenção/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia
19.
Netw Neurosci ; 4(3): 611-636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32885118

RESUMO

An overarching goal of neuroscience research is to understand how heterogeneous neuronal ensembles cohere into networks of coordinated activity to support cognition. To investigate how local activity harmonizes with global signals, we measured electroencephalography (EEG) while single pulses of transcranial magnetic stimulation (TMS) perturbed occipital and parietal cortices. We estimate the rapid network reconfigurations in dynamic network communities within specific frequency bands of the EEG, and characterize two distinct features of network reconfiguration, flexibility and allegiance, among spatially distributed neural sources following TMS. Using distance from the stimulation site to infer local and global effects, we find that alpha activity (8-12 Hz) reflects concurrent local and global effects on network dynamics. Pairwise allegiance of brain regions to communities on average increased near the stimulation site, whereas TMS-induced changes to flexibility were generally invariant to distance and stimulation site. In contrast, communities within the beta (13-20 Hz) band demonstrated a high level of spatial specificity, particularly within a cluster comprising paracentral areas. Together, these results suggest that focal magnetic neurostimulation to distinct cortical sites can help identify both local and global effects on brain network dynamics, and highlight fundamental differences in the manifestation of network reconfigurations within alpha and beta frequency bands.

20.
PLoS One ; 15(3): e0230517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32203562

RESUMO

Pupil size modulations have been used for decades as a window into the mind, and several pupillary features have been implicated in a variety of cognitive processes. Thus, a general challenge facing the field of pupillometry has been understanding which pupil features should be most relevant for explaining behavior in a given task domain. In the present study, a longitudinal design was employed where participants completed 8 biweekly sessions of a classic mental arithmetic task for the purposes of teasing apart the relationships between tonic/phasic pupil features (baseline, peak amplitude, peak latency) and two task-related cognitive processes including mental processing load (indexed by math question difficulty) and decision making (indexed by response times). We used multi-level modeling to account for individual variation while identifying pupil-to-behavior relationships at the single-trial and between-session levels. We show a dissociation between phasic and tonic features with peak amplitude and latency (but not baseline) driven by ongoing task-related processing, whereas baseline was driven by state-level effects that changed over a longer time period (i.e. weeks). Finally, we report a dissociation between peak amplitude and latency whereby amplitude reflected surprise and processing load, and latency reflected decision making times.


Assuntos
Cognição , Pupila/fisiologia , Pensamento , Atenção , Tomada de Decisões , Feminino , Humanos , Estudos Longitudinais , Masculino , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA