Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723550

RESUMO

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Assuntos
Técnicas de Cultura de Células/métodos , Hematopoese , Macrófagos/fisiologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese
2.
EMBO Rep ; 24(8): e56233, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37382163

RESUMO

Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.


Assuntos
Aspartato-Amônia Ligase , Células-Tronco Neurais , Aspartato-Amônia Ligase/metabolismo , Diferenciação Celular/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética
4.
Cereb Cortex ; 33(19): 10272-10285, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566909

RESUMO

The cortical plate (CP) is composed of excitatory and inhibitory neurons, the latter of which originate in the ganglionic eminences. From their origin in the ventral telencephalon, maturing postmitotic interneurons migrate during embryonic development over some distance to reach their final destination in the CP. The histone methyltransferase Disruptor of Telomeric Silencing 1-like (DOT1L) is necessary for proper CP development and layer distribution of glutamatergic neurons. However, its specific role on cortical interneuron development has not yet been explored. Here, we demonstrate that DOT1L affects interneuron development in a cell autonomous manner. Deletion of Dot1l in Nkx2.1-expressing interneuron precursor cells results in an overall reduction and altered distribution of GABAergic interneurons in the CP from postnatal day 0 onwards. We observed an altered proportion of GABAergic interneurons in the cortex, with a significant decrease in parvalbumin-expressing interneurons. Moreover, a decreased number of mitotic cells at the embryonic day E14.5 was observed upon Dot1l deletion. Altogether, our results indicate that reduced numbers of cortical interneurons upon DOT1L deletion result from premature cell cycle exit, but effects on postmitotic differentiation, maturation, and migration are likely at play as well.


Assuntos
Histona-Lisina N-Metiltransferase , Interneurônios , Parvalbuminas , Telencéfalo , Diferenciação Celular/fisiologia , Interneurônios/citologia , Interneurônios/metabolismo , Parvalbuminas/genética , Parvalbuminas/metabolismo , Telencéfalo/citologia , Animais , Camundongos , Histona-Lisina N-Metiltransferase/genética
5.
Proc Natl Acad Sci U S A ; 116(19): 9622-9627, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31015293

RESUMO

White matter abnormalities are a nearly universal pathological feature of neurodegenerative disorders including Huntington disease (HD). A long-held assumption is that this white matter pathology is simply a secondary outcome of the progressive neuronal loss that manifests with advancing disease. Using a mouse model of HD, here we show that white matter and myelination abnormalities are an early disease feature appearing before the manifestation of any behavioral abnormalities or neuronal loss. We further show that selective inactivation of mutant huntingtin (mHTT) in the NG2+ oligodendrocyte progenitor cell population prevented myelin abnormalities and certain behavioral deficits in HD mice. Strikingly, the improvements in behavioral outcomes were seen despite the continued expression of mHTT in nonoligodendroglial cells including neurons, astrocytes, and microglia. Using RNA-seq and ChIP-seq analyses, we implicate a pathogenic mechanism that involves enhancement of polycomb repressive complex 2 (PRC2) activity by mHTT in the intrinsic oligodendroglial dysfunction and myelination deficits observed in HD. Our findings challenge the long-held dogma regarding the etiology of white matter pathology in HD and highlight the contribution of epigenetic mechanisms to the observed intrinsic oligodendroglial dysfunction. Our results further suggest that ameliorating white matter pathology and oligodendroglial dysfunction may be beneficial for HD.


Assuntos
Comportamento Animal , Doenças Desmielinizantes , Proteína Huntingtina , Doença de Huntington , Mutação , Oligodendroglia , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Mutantes , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
6.
Neurobiol Dis ; 135: 104744, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31931139

RESUMO

Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.


Assuntos
Doença de Huntington/microbiologia , Proteínas da Mielina/metabolismo , Bainha de Mielina/patologia , Substância Branca/microbiologia , Animais , Bactérias/isolamento & purificação , Corpo Caloso/metabolismo , Corpo Caloso/microbiologia , Modelos Animais de Doenças , Doença de Huntington/patologia , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Plasticidade Neuronal/fisiologia , Oligodendroglia/metabolismo , Córtex Pré-Frontal/metabolismo , Substância Branca/patologia
7.
PLoS Biol ; 15(2): e1002597, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207742

RESUMO

Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls), attenuates diet-induced obesity (DIO) in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO) in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/uso terapêutico , Dieta/efeitos adversos , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fenantridinas/farmacologia , Fenantridinas/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores/metabolismo , Respiração Celular/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Condicionamento Físico Animal , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Neurobiol Dis ; 127: 65-75, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802499

RESUMO

Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.


Assuntos
Corpo Caloso/patologia , Microbioma Gastrointestinal/fisiologia , Doença de Huntington/microbiologia , Bainha de Mielina/patologia , Plasticidade Neuronal/fisiologia , Substância Branca/patologia , Animais , Modelos Animais de Doenças , Doença de Huntington/patologia , Camundongos
9.
NMR Biomed ; 31(12): e4007, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260561

RESUMO

Recent studies suggest that neurodegenerative diseases could affect brain structure and function in disease-specific network patterns; however, how spontaneous activity affects structural covariance network (SC) is not clear. We hypothesized that hyper-excitability in Huntington disease (HD) disrupts the coordinated structural and functional connectivity, and treatment with memantine helps to reduce excitotoxicity and normalize the connectivity. MRI was conducted to measure somatosensory activation, resting-state functional-connectivity (rsFC), SC, amplitude of low frequency fluctuation (ALFF) and ALFF covariance (ALFFC) in the YAC128 mouse model of HD. We found somatosensory activation was unchanged but the subcortical ALFF was increased in HD mice, indicating subcortical but not cortical hyperactivity. The reduced sensorimotor rsFC but spared hippocampal and default mode networks in the HD mice was consistent with the more pronounced impairment in motor function compared with cognitive performance. The disease suppressed SC globally and reduced ALFFC in the basal ganglia network as well as its anti-correlation with the default mode network. By comparing these connectivity measures, we found that the originally coupled rsFC-SC relationship was impaired whereas SC-ALFFC correlation was increased by HD, suggesting disease facilitated covariation of brain volume and activity amplitude but not neural synchrony. The comparison with mono-synaptic axonal projection supports the hypothesis that rsFC, but not SC or ALFFC, is highly dependent on structural connectivity under healthy conditions. Treatment with memantine had a strong effect on normalizing the SC and reducing ALFF while slightly increasing other connectivity measures and restoring the rsFC-SC coupling, which is consistent with its effect on alleviating hyper-excitability and improving the coordinated neural growth. These results indicate that HD affects the cerebral structure-function relationship which could be partially reverted by NMDA antagonism. These connectivity measures provide unique insights into pathological and pharmaceutical effects in brain circuitry, and could be translatable biomarkers for evaluating drug effect and refining its efficacy.


Assuntos
Conectoma , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Imageamento por Ressonância Magnética , Animais , Axônios/patologia , Comportamento Animal , Cognição , Modelos Animais de Doenças , Estimulação Elétrica , Humanos , Masculino , Memantina , Camundongos , Atividade Motora , Rede Nervosa/fisiopatologia , Oxigênio/sangue , Descanso , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Relação Estrutura-Atividade
10.
Mol Neurobiol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079108

RESUMO

Environmental deprivation can have deleterious effects on adaptive myelination and oligodendroglia function. Early stage Huntington disease (HD) is characterised by white-matter myelin abnormalities in both humans and animal models. However, whether deprived environments exacerbate myelin-related pathological features of HD is not clearly understood. Here, we investigated the impact of deprivation and social isolation on ultrastructural features of myelin in the corpus callosum of the YAC128 mouse model of HD and wildtype (WT) mice using transmission electron microscopy. HD pathology on its own leads to increased representation of altered myelin features, such as thinner sheaths and compromised morphology. Interestingly, deprivation mirrors these effects in WT mice but does not greatly exacerbate the already aberrant myelin in HD mice, indicating a disease-related floor effect in the latter animals. These novel findings indicate that environmental deprivation causes abnormalities in myelin ultrastructure in the otherwise healthy corpus callosum of wild-type mice but has distinct effects on HD mice, where compromised myelin integrity is manifest from early stages of the disease.

11.
Neuromolecular Med ; 25(4): 644-649, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684514

RESUMO

Transcriptional and proteomics analyses in human fragile X syndrome (FXS) neurons identified markedly reduced expression of COMT, a key enzyme involved in the metabolism of catecholamines, including dopamine, epinephrine and norepinephrine. FXS is the most common genetic cause of intellectual disability and autism spectrum disorders. COMT encodes for catechol-o-methyltransferase and its association with neuropsychiatric disorders and cognitive function has been extensively studied. We observed a significantly reduced level of COMT in in FXS human neural progenitors and neurons, as well as hippocampal neurons from Fmr1 null mice. We show that deficits in COMT were associated with an altered response in an assay of dopaminergic activity in Fmr1 null mice. These findings demonstrate that loss of FMRP downregulates COMT expression and affects dopamine signaling in FXS, and supports the notion that targeting catecholamine metabolism may be useful in regulating certain neuropsychiatric aspects of FXS.


Assuntos
Catecol O-Metiltransferase , Síndrome do Cromossomo X Frágil , Animais , Humanos , Camundongos , Catecol O-Metiltransferase/genética , Dopamina/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Neurônios/metabolismo
12.
Epigenetics Chromatin ; 16(1): 36, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759327

RESUMO

BACKGROUND: NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79). DOT1L, playing functional roles in several biological processes, is known for its capability to organize and regulate chromatin. For example, DOT1L modulates DNA repeats expression within peri-nucleolar heterochromatin. NPM1 also affects peri-nucleolar heterochromatin spatial organization. However, it is unclear as of yet whether NPM1 and DOT1L functionally synergize to preserve nucleoli organization and genome stability, and generally, which molecular mechanisms would be involved. RESULTS: We characterized the nuclear function of NPM1 on peri-nucleolar heterochromatin organization. We show that (i) monomeric NPM1 interacts preferentially with DOT1L in the nucleus; (ii) NPM1 acts in concert with DOT1L to maintain each other's protein homeostasis; (iii) NPM1 depletion results in H3K79me2 upregulation and differential enrichment at chromatin binding genes including Ezh2; (iv) NPM1 and DOT1L modulate DNA repeats expression and peri-nucleolar heterochromatin organization via epigenetic mechanisms dependent on H3K27me3. CONCLUSIONS: Our findings give insights into molecular mechanisms employed by NPM1 and DOT1L to regulate heterochromatin activity and structural organization around the nucleoli and shed light on one aspect of the complex role of both proteins in chromatin dynamics.


Assuntos
Heterocromatina , Histonas , Cromatina , DNA , Histonas/metabolismo , Nucleofosmina , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Camundongos
13.
Brain Pathol ; 32(5): e13064, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35285112

RESUMO

Ermin is an actin-binding protein found almost exclusively in the central nervous system (CNS) as a component of myelin sheaths. Although Ermin has been predicted to play a role in the formation and stability of myelin sheaths, this has not been directly examined in vivo. Here, we show that Ermin is essential for myelin sheath integrity and normal saltatory conduction. Loss of Ermin in mice caused de-compacted and fragmented myelin sheaths and led to slower conduction along with progressive neurological deficits. RNA sequencing of the corpus callosum, the largest white matter structure in the CNS, pointed to inflammatory activation in aged Ermin-deficient mice, which was corroborated by increased levels of microgliosis and astrogliosis. The inflammatory milieu and myelin abnormalities were further associated with increased susceptibility to immune-mediated demyelination insult in Ermin knockout mice. Supporting a possible role of Ermin deficiency in inflammatory white matter disorders, a rare inactivating mutation in the ERMN gene was identified in multiple sclerosis patients. Our findings demonstrate a critical role for Ermin in maintaining myelin integrity. Given its near-exclusive expression in myelinating oligodendrocytes, Ermin deficiency represents a compelling "inside-out" model of inflammatory dysmyelination and may offer a new paradigm for the development of myelin stability-targeted therapies.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Camundongos , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
14.
J Huntingtons Dis ; 10(3): 377-384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366364

RESUMO

BACKGROUND: The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington's disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. OBJECTIVE: We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. METHODS: Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. RESULTS: We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. CONCLUSION: Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.


Assuntos
Doença de Huntington , Substância Branca , Animais , Doença de Huntington/genética , Camundongos , Bainha de Mielina , Oligodendroglia , Medula Espinal
15.
Biol Psychiatry ; 88(6): 500-511, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653109

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS: Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS: We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS: Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Células-Tronco Pluripotentes Induzidas , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Neurônios
16.
Mol Neurobiol ; 56(6): 4464-4478, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30334188

RESUMO

Laquinimod, an immunomodulatory agent under clinical development for Huntington disease (HD), has recently been shown to confer behavioural improvements that are coupled with prevention of atrophy of the white matter (WM)-rich corpus callosum (CC) in the YAC128 HD mice. However, the nature of the WM improvements is not known yet. Here we investigated the effects of laquinimod on HD-related myelination deficits at the cellular, molecular and ultrastructural levels. We showed that laquinimod treatment improves motor learning and motor function deficits in YAC128 HD mice, and confirmed its antidepressant effect even at the lowest dose used. In addition, we demonstrated for the first time the beneficial effects of laquinimod on myelination in the posterior region of the CC where it reversed changes in myelin sheath thickness and rescued Mbp mRNA and protein deficits. Furthermore, the effect of laquinimod on myelin-related gene expression was not region-specific since the levels of the Mbp and Plp1 transcripts were also increased in the striatum. Also, we did not detect changes in immune cell densities or levels of inflammatory genes in 3-month-old YAC128 HD mice, and these were not altered with laquinimod treatment. Thus, the beneficial effects of laquinimod on HD-related myelination abnormalities in YAC128 HD mice do not appear to be dependent on its immunomodulatory activity. Altogether, our findings describe the beneficial effects of laquinimod treatment on HD-related myelination abnormalities and highlight its therapeutic potential for the treatment of WM pathology in HD patients.


Assuntos
Doença de Huntington/tratamento farmacológico , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Quinolonas/uso terapêutico , Transcrição Gênica , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Comportamento Animal , Contagem de Células , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Citocromo P-450 CYP1A1/metabolismo , Depressão/complicações , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doença de Huntington/complicações , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Inflamação/genética , Inflamação/patologia , Aprendizagem , Masculino , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fenótipo , Quinolonas/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
Mol Neurodegener ; 13(1): 25, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29783994

RESUMO

BACKGROUND: Huntington Disease (HD) is an incurable autosomal dominant neurodegenerative disorder driven by an expansion repeat giving rise to the mutant huntingtin protein (mHtt), which is known to disrupt a multitude of transcriptional pathways. Pridopidine, a small molecule in development for treatment of HD, has been shown to improve motor symptoms in HD patients. In HD animal models, pridopidine exerts neuroprotective effects and improves behavioral and motor functions. Pridopidine binds primarily to the sigma-1 receptor, (IC50 ~ 100 nM), which mediates its neuroprotective properties, such as rescue of spine density and aberrant calcium signaling in HD neuronal cultures. Pridopidine enhances brain-derived neurotrophic factor (BDNF) secretion, which is blocked by putative sigma-1 receptor antagonist NE-100, and was shown to upregulate transcription of genes in the BDNF, glucocorticoid receptor (GR), and dopamine D1 receptor (D1R) pathways in the rat striatum. The impact of different doses of pridopidine on gene expression and transcript splicing in HD across relevant brain regions was explored, utilizing the YAC128 HD mouse model, which carries the entire human mHtt gene containing 128 CAG repeats. METHODS: RNAseq was analyzed from striatum, cortex, and hippocampus of wild-type and YAC128 mice treated with vehicle, 10 mg/kg or 30 mg/kg pridopidine from the presymptomatic stage (1.5 months of age) until 11.5 months of age in which mice exhibit progressive disease phenotypes. RESULTS: The most pronounced transcriptional effect of pridopidine at both doses was observed in the striatum with minimal effects in other regions. In addition, for the first time pridopidine was found to have a dose-dependent impact on alternative exon and junction usage, a regulatory mechanism known to be impaired in HD. In the striatum of YAC128 HD mice, pridopidine treatment initiation prior to symptomatic manifestation rescues the impaired expression of the BDNF, GR, D1R and cAMP pathways. CONCLUSIONS: Pridopidine has broad effects on restoring transcriptomic disturbances in the striatum, particularly involving synaptic transmission and activating neuroprotective pathways that are disturbed in HD. Benefits of treatment initiation at early disease stages track with trends observed in the clinic.


Assuntos
Expressão Gênica/efeitos dos fármacos , Doença de Huntington , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Transmissão Sináptica/efeitos dos fármacos
18.
JCI Insight ; 2(23)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212949

RESUMO

Pridopidine is currently under clinical development for Huntington disease (HD), with on-going studies to better characterize its therapeutic benefit and mode of action. Pridopidine was administered either prior to the appearance of disease phenotypes or in advanced stages of disease in the YAC128 mouse model of HD. In the early treatment cohort, animals received 0, 10, or 30 mg/kg pridopidine for a period of 10.5 months. In the late treatment cohort, animals were treated for 8 weeks with 0 mg/kg or an escalating dose of pridopidine (10 to 30 mg/kg over 3 weeks). Early treatment improved motor coordination and reduced anxiety- and depressive-like phenotypes in YAC128 mice, but it did not rescue striatal and corpus callosum atrophy. Late treatment, conversely, only improved depressive-like symptoms. RNA-seq analysis revealed that early pridopidine treatment reversed striatal transcriptional deficits, upregulating disease-specific genes that are known to be downregulated during HD, a finding that is experimentally confirmed herein. This suggests that pridopidine exerts beneficial effects at the transcriptional level. Taken together, our findings support continued clinical development of pridopidine for HD, particularly in the early stages of disease, and provide valuable insight into the potential therapeutic mode of action of pridopidine.


Assuntos
Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Piperidinas/administração & dosagem , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Comportamento Animal/efeitos dos fármacos , Corpo Caloso/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Doença de Huntington/psicologia , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Piperidinas/uso terapêutico , Prevenção Secundária/métodos , Transcrição Gênica/efeitos dos fármacos
19.
Exp Neurol ; 278: 4-10, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26825854

RESUMO

Abnormal monoamine oxidase A and B (MAO-A/B) activity and an imbalance in monoamine neurotransmitters have been suggested to underlie the pathobiology of depression, a major psychiatric symptom observed in patients with neurodegenerative diseases, such as Huntington disease (HD). Increased MAO-A/B activity has been observed in brain tissue from patients with HD and in human and rodent HD neural cells. Using the YAC128 mouse model of HD, we studied the effect of an irreversible MAO-A inhibitor, clorgyline, on the levels of select monoamine neurotransmitters associated with affective function. We observed a decrease in striatal levels of the MAO-A/B substrates, dopamine and norepinephrine, in YAC128 HD mice compared with wild-type mice, which was accompanied by increased anxiety- and depressive-like behaviour at five months of age. Treatment for 26 days with clorgyline restored dopamine, serotonin, and norepinephrine neurotransmitter levels in the striatum and reduced anxiety- and depressive-like behaviour in YAC128 HD mice. This study supports a potential therapeutic use for MAO-A inhibitors in the treatment of depression and anxiety in patients with HD.


Assuntos
Clorgilina/uso terapêutico , Modelos Animais de Doenças , Doença de Huntington/complicações , Inibidores da Monoaminoxidase/uso terapêutico , Transtornos do Humor , Neurotransmissores/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Elevação dos Membros Posteriores , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Monoaminoxidase/metabolismo , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/etiologia , Transtornos do Humor/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Natação
20.
Sci Rep ; 6: 31652, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27528441

RESUMO

Increasing evidence supports a role for abnormal immune activation and inflammatory responses in Huntington disease (HD). In this study, we evaluated the therapeutic potential of laquinimod (1 and 10 mg/kg), a novel immunomodulatory agent shown to be protective in a number of neuroinflammatory conditions, in the YAC128 mouse model of HD. Treatment with laquinimod for 6 months rescued atrophy in the striatum, in certain cortical regions, and in the corpus callosum of YAC128 HD mice. Diffusion tensor imaging showed that white matter microstructural abnormalities in the posterior corpus callosum were improved following treatment with low dose (1 mg/kg) laquinimod, and were paralleled by reduced levels of interleukin-6 in the periphery of YAC128 HD mice. Functionally, treatment with laquinimod (1 and 10 mg/kg) led to modest improvements in motor function and in depressive-like behaviour. Taken together, these results suggest that laquinimod may improve some features of pathology in HD, and provides support for the role of immune activation in the pathogenesis of HD.


Assuntos
Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Doença de Huntington/tratamento farmacológico , Quinolonas/uso terapêutico , Substância Branca/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/patologia , Imagem de Tensor de Difusão , Relação Dose-Resposta a Droga , Feminino , Doença de Huntington/fisiopatologia , Interleucina-6/sangue , Masculino , Camundongos , Quinolonas/farmacologia , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA