Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072194

RESUMO

BRAFV600E is the most frequent oncogenic mutation identified in papillary thyroid cancer (PTC). In PTC patients who do not respond to standard treatment, BRAF inhibitors are currently tested as alternative strategies. However, as observed for other targeted therapies, patients eventually develop drug resistance. The mechanisms of BRAF inhibitors response are still poorly understood in a thyroid cancer (TC) context. In this study, we investigated in BRAFV600E mutated TC cell lines the effects of Vemurafenib and Dabrafenib, two BRAF inhibitors currently used in a clinical setting. We assessed cell proliferation, and the expression and activity of the thyroid function related transporter NIS following the treatment with BRAF inhibitors. In addition, we investigated the global gene expression by microarray, the relevant modulated biological processes by gene set enrichment analysis (GSEA), and TC specific gene signatures related to MAPK pathway activation, thyroid differentiation, and transcriptional profile associated with BRAFV600E or RAS mutation. We found that both inhibitors induce antiproliferative and redifferentiative effects on TC cells, as well as a rewiring of the MAPK pathway related to RAS signaling. Our results suggest a possible mechanism of drug response to the BRAF inhibitors Vemurafenib or Dabrafenib, supporting very recent findings in TC patients treated with targeted therapies.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/metabolismo , Proteínas ras/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/etiologia , Neoplasias da Glândula Tireoide/patologia , Transcriptoma
2.
Cell Commun Signal ; 18(1): 156, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967672

RESUMO

BACKGROUND: Targeted therapy with BRAF and MEK inhibitors has improved the survival of patients with BRAF-mutated metastatic melanoma, but most patients relapse upon the onset of drug resistance induced by mechanisms including genetic and epigenetic events. Among the epigenetic alterations, microRNA perturbation is associated with the development of kinase inhibitor resistance. Here, we identified and studied the role of miR-146a-5p dysregulation in melanoma drug resistance. METHODS: The miR-146a-5p-regulated NFkB signaling network was identified in drug-resistant cell lines and melanoma tumor samples by expression profiling and knock-in and knock-out studies. A bioinformatic data analysis identified COX2 as a central gene regulated by miR-146a-5p and NFkB. The effects of miR-146a-5p/COX2 manipulation were studied in vitro in cell lines and with 3D cultures of treatment-resistant tumor explants from patients progressing during therapy. RESULTS: miR-146a-5p expression was inversely correlated with drug sensitivity and COX2 expression and was reduced in BRAF and MEK inhibitor-resistant melanoma cells and tissues. Forced miR-146a-5p expression reduced COX2 activity and significantly increased drug sensitivity by hampering prosurvival NFkB signaling, leading to reduced proliferation and enhanced apoptosis. Similar effects were obtained by inhibiting COX2 by celecoxib, a clinically approved COX2 inhibitor. CONCLUSIONS: Deregulation of the miR-146a-5p/COX2 axis occurs in the development of melanoma resistance to targeted drugs in melanoma patients. This finding reveals novel targets for more effective combination treatment. Video Abstract.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Resistencia a Medicamentos Antineoplásicos , Mediadores da Inflamação/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/patologia , MicroRNAs/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Neurochem ; 136(4): 706-716, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26708837

RESUMO

Long-term memory is accompanied by changes in neuronal morphology and connectivity. These alterations are thought to depend upon new gene expression and protein synthesis over a distributed network of brain structures. Although much evidence supports the idea that the creation of stable, persistent memory traces requires synthesis of new proteins, the role of rRNA transcription and nucleolar activity in learning and memory has hardly been explored. rRNAs needed for protein synthesis result from the activity of two different RNA polymerases, RNA polymerase I and RNA polymerase III, transcribing for 47S RNA and 5S RNA, respectively. In this study, we first investigated the effects of spatial training in the Morris water maze on 47S RNA transcription in the central nervous system, demonstrating bidirectional modulation of its expression over a distributed neural network. We found learning-induced increases in the nucleolar organizer regions in the hippocampus. Finally, we demonstrated that intrahippocampal administrations of CX-5461 (0.6 µg/side), the specific RNA Polymerase I inhibitor, impair the ability of mice to locate the platform in the same task. These results suggest that de novo rRNA transcription is a necessary step for spatial memory consolidation, and that after learning, it occurs in several brain regions with a complex spatiotemporal dynamic. In this study, we demonstrate for the very first time that spatial learning modulates ribosomal RNA transcription in a wide brain circuit, with anatomical specificities in the dynamic of modulation. Together with pharmacological evidences, data presented here support the hypothesis of a necessary role of RNA Pol-I transcription during spatial memory formation. Read the Editorial Highlight for this article on page 673.

4.
J Immunother Cancer ; 12(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177075

RESUMO

Durable remissions are observed in 10%-20% of treated patients with advanced metastatic melanoma but the factors associated with long-term complete clinical responses are largely unknown. Here, we report the molecular characteristics of tumor evolution during disease progression along a 9-year clinical course in a patient with advanced disseminated melanoma who received different treatments, including trametinib, ipilimumab, radiation, vemurafenib, surgical tumor debulking and a second ipilimumab course, ultimately achieving complete long-term disease remission.Longitudinal analyses of therapies-resistant metastatic tumors revealed the effects of different treatments on tumor's microenvironment and immunogenicity, ultimately creating a milieu favorable to immunotherapy response. Monitoring of the temporal dynamics of T cells by analysis of the T cell receptor (TCR) repertoire in the tumor and peripheral blood during disease evolution indicated that T-cell clones with common TCR rearrangements, present at low levels at baseline, were maintained and expanded after immunotherapy, and that TCR diversity increased. Analysis of genetic, molecular, and cellular components of the tumor depicted a multistep process in which treatment with kinase inhibitors strongly conditioned the immune microenvironment creating an inflamed milieu converting cold into hot tumors, while ipilimumab impacted and increased the TCR repertoire, a requirement for tumor rejection.Since the optimal sequencing of treatment with antibodies targeting immune checkpoints and kinase inhibitors for advanced melanoma is still clinically debated, this case indicates that immunotherapy success is possible even after progression on targeted therapy.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Ipilimumab/uso terapêutico , Vemurafenib , Linfócitos T/patologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Microambiente Tumoral
5.
Front Oncol ; 12: 911613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928879

RESUMO

Background: Circulating microRNAs (ct-miRs) are promising cancer biomarkers. This study focuses on platform comparison to assess performance variability, agreement in the assignment of a miR signature classifier (MSC), and concordance for the identification of cancer-associated miRs in plasma samples from non-small cell lung cancer (NSCLC) patients. Methods: A plasma cohort of 10 NSCLC patients and 10 healthy donors matched for clinical features and MSC risk level was profiled for miR expression using two sequencing-based and three quantitative reverse transcription PCR (qPCR)-based platforms. Intra- and inter-platform variations were examined by correlation and concordance analysis. The MSC risk levels were compared with those estimated using a reference method. Differentially expressed ct-miRs were identified among NSCLC patients and donors, and the diagnostic value of those dysregulated in patients was assessed by receiver operating characteristic curve analysis. The downregulation of miR-150-5p was verified by qPCR. The Cancer Genome Atlas (TCGA) lung carcinoma dataset was used for validation at the tissue level. Results: The intra-platform reproducibility was consistent, whereas the highest values of inter-platform correlations were among qPCR-based platforms. MSC classification concordance was >80% for four platforms. The dysregulation and discriminatory power of miR-150-5p and miR-210-3p were documented. Both were significantly dysregulated also on TCGA tissue-originated profiles from lung cell carcinoma in comparison with normal samples. Conclusion: Overall, our studies provide a large performance analysis between five different platforms for miR quantification, indicate the solidity of MSC classifier, and identify two noninvasive biomarkers for NSCLC.

6.
Cancers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200770

RESUMO

Collecting duct carcinoma (CDC) is a rare and highly aggressive kidney cancer subtype with poor prognosis and no standard treatments. To date, only a few studies have examined the transcriptomic portrait of CDC. Through integration of multiple datasets, we compared CDC to normal tissue, upper-tract urothelial carcinomas, and other renal cancers, including clear cell, papillary, and chromophobe histologies. Association between CDC gene expression signatures and in vitro drug sensitivity data was evaluated using the Cancer Therapeutic Response Portal, Genomics of Drug Sensitivity in Cancer datasets, and connectivity map. We identified a CDC-specific gene signature that predicted in vitro sensitivity to different targeted agents and was associated to worse outcome in clear cell renal cell carcinoma. We showed that CDC are transcriptionally related to the principal cells of the collecting ducts providing evidence that this tumor originates from this normal kidney cell type. Finally, we proved that CDC is a molecularly heterogeneous disease composed of at least two subtypes distinguished by cell signaling, metabolic and immune-related alterations. Our findings elucidate the molecular features of CDC providing novel biological and clinical insights. The identification of distinct CDC subtypes and their transcriptomic traits provides the rationale for patient stratification and alternative therapeutic approaches.

7.
Clin Cancer Res ; 27(23): 6307-6313, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34548320

RESUMO

PURPOSE: Little is known about the efficacy of HER2-targeted therapy in patients with breast cancer showing different HER2-pathway dependence and immune phenotypes. Herein, we report a NeoALTTO exploratory analysis evaluating the clinical value of 22 types of tumor-infiltrating immune cells by CIBERSORT and 5 immune-related metagenes in the overall patient population, and in subgroups defined by the TRAR classifier as HER2-addicted (TRAR-low) or not (TRAR-high). PATIENTS AND METHODS: Association of baseline TRAR, immune-related metagenes, and CIBERSORT data with pathologic complete response (pCR) and event-free survival (EFS) were assessed using logistic and Cox regression models. Corrections for multiple testing were performed by the Bonferroni method. RESULTS: A total of 226 patients were analyzed: 80 (35%) achieved a pCR, and 64 (28%) experienced a relapse with a median follow-up of 6.7 (interquartile range 6.1-6.8) years; 108 cases were classified as TRAR-low, and 118 TRAR-high. Overall, γδ T-cell fraction [OR = 2.69; 95% confidence interval (CI), 1.40-5.18], and no immune-related metagenes were predictive of pCR. Notably, lymphocyte-specific kinase (LCK) predicted pCR to combination (OR = 2.53; 95% CI, 1.12-5.69), but not to single-agent trastuzumab or lapatinib [OR = 0.74; 95% CI, 0.45-1.22 (P interaction = 0.01)]. Integrating LCK with γδ T cells in a multivariate model added to the discriminatory capability of clinical and molecular variables with a shift in AUC from 0.80 (95% CI, 0.74-0.86) to 0.83 (95% CI, 0.78-0.89). In TRAR-low cases, activated mast cells, IFN and MHCII were reduced, and STAT1, HCK1, and γδ T cells were associated with pCR. STAT1 was broadly associated with improved EFS regardless of pCR, and nodal status in overall (HR = 0.68; 95% CI, 0.49-0.94) and in TRAR-low cases (HR = 0.50; 95% CI, 0.30-0.86). CONCLUSIONS: Immuno-phenotyping holds the promise to complement current predictive models in HER2-positive breast cancer and to assist in new therapeutic development.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Fenótipo , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Trastuzumab/uso terapêutico , Resultado do Tratamento
8.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439180

RESUMO

In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy.

9.
J Exp Clin Cancer Res ; 39(1): 245, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198784

RESUMO

BACKGROUND: Papillary thyroid cancer (PTC) is the most frequent endocrine tumor. Radioiodine (RAI) treatment is highly effective in these tumors, but up to 60% of metastatic cases become RAI-refractory. Scanty data are available on either the molecular pattern of radioiodine refractory papillary thyroid cancers (PTC) or the mechanisms responsible for RAI resistance. METHODS: We analyzed the molecular profile and gene/miRNA expression in primary PTCs, synchronous and RAI-refractory lymph node metastases (LNMs) in correlation to RAI avidity or refractoriness. We classified patients as RAI+/D+ (RAI uptake/disease persistence), RAI-/D+ (absent RAI uptake/disease persistence), and RAI+/D- (RAI uptake/disease remission), and analyzed the molecular and gene/miRNA profiles, and the expression of thyroid differentiation (TD) related genes. RESULTS: A different molecular profile according to the RAI class was observed: BRAFV600E cases were more frequent in RAI-/D+ (P = 0.032), and fusion genes in RAI+/D+ cases. RAI+/D- patients were less frequently pTERT mutations positive, and more frequently wild type for the tested mutations/fusions. Expression profiles clearly distinguished PTC from normal thyroid. On the other hand, in refractory cases (RAI+/D+ and RAI-/D+) no distinctive PTC expression patterns were associated with either tissue type, or RAI uptake, but with the driving lesion and BRAF-/RAS-like subtype. Primary tumors and RAI-refractory LNMs with BRAFV600E mutation display transcriptome similarity suggesting that RAI minimally affects the expression profiles of RAI-refractory metastases. Molecular profiles associated with the expression of TPO, SLC26A4 and TD genes, that were found more downregulated in BRAFV600E than in gene fusions tumors. CONCLUSIONS: The present data indicate a different molecular profile in RAI-avid and RAI-refractory metastatic PTCs. Moreover, BRAFV600E tumors displayed reduced differentiation and intrinsic RAI refractoriness, while PTCs with fusion oncogenes are RAI-avid but persistent, suggesting different oncogene-driven mechanisms leading to RAI refractoriness.


Assuntos
Radioisótopos do Iodo/metabolismo , MicroRNAs/genética , Câncer Papilífero da Tireoide/genética , Transcriptoma/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Câncer Papilífero da Tireoide/patologia
10.
Cancers (Basel) ; 11(9)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533233

RESUMO

Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup of patients whose optimal clinical management and access to care remain a challenge and whose survival lacks behind that of children diagnosed with histologically similar tumors. Understanding the tumor biology that differentiates children from AYA-RMS could provide critical information and drive new initiatives to improve the final outcome. MicroRNA (miRNA) and gene expression profiling (GEP) was evaluated in a RMS cohort of 49 tumor and 15 non-neoplastic tissues. miRNAs analysis identified miR-223 over-expression and miR-431 down-regulation in AYA, validated by Real-Time PCR and miRNA in situ hybridization (ISH). GEP analysis detected 793 age-correlated genes in tumors, of which 194 were anti-correlated. NOTCH2, FGFR1/2 were significantly down-modulated in AYA-RMS. miR-223 was associated with up-regulation of epithelial mesenchymal translation (EMT) and inflammatory pathways, whereas miR-431 was correlated to myogenic differentiation and muscle metabolism. GEP showed an increase in genes associated with CD4 memory resting cells and a decrease in genes associated with γδ T-cells in AYA-RMS. Immunohistochemistry (IHC) analysis demonstrated an increase of infiltrated CD4, CD8, and neutrophils in AYA-RMS tumors. Our results show that aggressiveness of AYA-RMS could be explained by differences in microenvironmental signal modulation mediated by tumor cells, suggesting a fundamental role of immune contexture in AYA-RMS development.

11.
Oncotarget ; 9(32): 22817-22831, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29854317

RESUMO

Lamin A/C is a major constituent of the nuclear lamina implicated in a number of genetic diseases, collectively known as laminopathies. The most severe forms of laminopathies feature, among other symptoms, congenital scoliosis, osteoporosis, osteolysis or delayed cranial ossification. Importantly, specific bone districts are typically affected in laminopathies. Spine is severely affected in LMNA-linked congenital muscular dystrophy. Mandible, terminal phalanges and clavicles undergo osteolytic processes in progeroid laminopathies and Restrictive Dermopathy, a lethal developmental laminopathy. This specificity suggests that lamin A/C regulates fine mechanisms of bone turnover, as supported by data showing that lamin A/C mutations activate non-canonical pathways of osteoclastogenesis, as the one dependent on TGF beta 2. Here, we review current knowledge on laminopathies affecting bone and LMNA involvement in bone turnover and highlight lamin-dependent mechanisms causing bone disorders. This knowledge can be exploited to identify new therapeutic approaches not only for laminopathies, but also for other rare diseases featuring bone abnormalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA