RESUMO
Phytochrome A (phyA) is a red and far-red (FR) sensing photoreceptor regulating plant growth and development. Its biologically active FR-absorbing form Pfr translocates into the nucleus and subsequently regulates gene expression. Two transport facilitators, FR elongated hypocotyl 1 (FHY1) and FHY1-like (FHL), are crucial for its cytoplasmic-nuclear translocation. FHY1 interacts preferentially with activated phyA (Pfr) in assays with recombinant phyA and FHY1 and in vivo. Nuclear translocation of the phyA-FHY1 complex depends on a nuclear localization signal (NLS) of FHY1, which is recognized by IMPαs independently of phyA. The complex is guided along the actin cytoskeleton. Additionally, FHY1 has the ability to exit the nucleus via the exportin route, thus is able to repeatedly transport phyA molecules to the nucleus, balancing the nucleo-cytoplasmic distribution. The direction of FHY1s transport appears to depend on its phosphorylation state in different compartments. Phosphorylated serins close to the NLS prevent FHY1 binding to IMPα. The work presented here elucidates key steps of the mechanism by which photoactivated phyA translocates to the nucleus.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Fitocromo A/metabolismo , Fitocromo/fisiologia , Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismoRESUMO
The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of â¼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Motivos de Nucleotídeos/genética , Fatores de Transcrição/metabolismo , Sequência de Bases , Hipóxia Celular/genética , Proteínas de Ligação a DNA , Genes de Plantas , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional/genéticaRESUMO
Plant responses to biotic and abiotic stresses are often very specific, but signal transduction pathways can partially or completely overlap. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the transcriptional responses to phosphate starvation and oxygen deficiency stress comprise a set of commonly induced genes. While the phosphate deficiency response is systemic, under oxygen deficiency, most of the commonly induced genes are found only in illuminated shoots. This jointly induced response to the two stresses is under control of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), but not of the oxygen-sensing N-end rule pathway, and includes genes encoding proteins for the synthesis of galactolipids, which replace phospholipids in plant membranes under phosphate starvation. Despite the induction of galactolipid synthesis genes, total galactolipid content and plant survival are not severely affected by the up-regulation of galactolipid gene expression in illuminated leaves during hypoxia. However, changes in galactolipid molecular species composition point to an adaptation of lipid fluxes through the endoplasmic reticulum and chloroplast pathways during hypoxia. PHR1-mediated signaling of phosphate deprivation was also light dependent. Because a photoreceptor-mediated PHR1 activation was not detectable under hypoxia, our data suggest that a chloroplast-derived retrograde signal, potentially arising from metabolic changes, regulates PHR1 activity under both oxygen and phosphate deficiency.