Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916041

RESUMO

Transition metal complexes with ß-diketonate and diamine ligands are valuable precursors for chemical vapor deposition (CVD) of metal oxide nanomaterials, but the metal-ligand bond dissociation mechanism on the growth surface is not yet clarified in detail. We address this question by density functional theory (DFT) and ab initio molecular dynamics (AIMD) in combination with the Blue Moon (BM) statistical sampling approach. AIMD simulations of the Zn ß-diketonate-diamine complex Zn(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine), an amenable precursor for the CVD of ZnO nanosystems, show that rolling diffusion of this precursor at 500 K on a hydroxylated silica slab leads to an octahedral-to-square pyramidal rearrangement of its molecular geometry. The free energy profile of the octahedral-to-square pyramidal conversion indicates that the process barrier (5.8 kcal/mol) is of the order of magnitude of the thermal energy at the operating temperature. The formation of hydrogen bonds with surface hydroxyl groups plays a key role in aiding the dissociation of a Zn-O bond. In the square-pyramidal complex, the Zn center has a free coordination position, which might promote the interaction with incoming reagents on the deposition surface. These results provide a valuable atomistic insight on the molecule-to-material conversion process which, in perspective, might help to tailor by design the first nucleation stages of the target ZnO-based nanostructures.

2.
Langmuir ; 34(15): 4568-4574, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29624397

RESUMO

Photoreforming promoted by metal oxide nanophotocatalysts is an attractive route for clean and sustainable hydrogen generation. In the present work, we propose for the first time the use of supported Mn3O4 nanosystems, both pure and functionalized with Au nanoparticles (NPs), for hydrogen generation by photoreforming. The target oxide systems, prepared by chemical vapor deposition (CVD) and decorated with gold NPs by radio frequency (RF) sputtering, were subjected to a thorough chemico-physical characterization and utilized for a proof-of-concept H2 generation in aqueous ethanolic solutions under simulated solar illumination. Pure Mn3O4 nanosystems yielded a constant hydrogen production rate of 10 mmol h-1 m-2 even for irradiation times up to 20 h. The introduction of Au NPs yielded a significant enhancement in photocatalytic activity, which decreased as a function of irradiation time. The main phenomena causing the Au-containing photocatalyst deactivation have been investigated by morphological and compositional analysis, providing important insights for the design of Mn3O4-based photocatalysts with improved performances.

3.
Inorg Chem ; 57(23): 14564-14573, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30407794

RESUMO

Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses, from heterogeneous catalysis to gas sensing, owing to its structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasma-assisted process starting from a fluorinated manganese(II) molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and morphology revealed the formation of F-doped, oxygen-deficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature ( TG). Whereas phase-pure ß-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vis-light activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.

4.
Chemistry ; 23(71): 17954-17963, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29164705

RESUMO

Molecular engineering of manganese(II) diamine diketonate precursors is a key issue for their use in the vapor deposition of manganese oxide materials. Herein, two closely related ß-diketonate diamine MnII adducts with different fluorine contents in the diketonate ligands are examined. The target compounds were synthesized by a simple procedure and, for the first time, thoroughly characterized by a joint experimental-theoretical approach, to understand the influence of the ligand on their structures, electronic properties, thermal behavior, and reactivity. The target compounds are monomeric and exhibit a pseudo-octahedral coordination of the MnII centers, with differences in their structure and fragmentation processes related to the ligand nature. Both complexes can be readily vaporized without premature side decompositions, a favorable feature for their use as precursors for chemical vapor deposition (CVD) or atomic layer deposition applications. Preliminary CVD experiments at moderate growth temperatures enabled the fabrication of high-purity, single-phase Mn3 O4 nanosystems with tailored morphology, which hold great promise for various technological applications.

5.
ChemSusChem ; : e202401041, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979895

RESUMO

In the present work, exfoliated graphitic carbon nitride (g-CN) is immobilized on carbon paper substrates by a simple electrophoretic route, and subsequently decorated with ultra-low amounts (≈µg/cm2) of Pt nanoparticles (NPs) by cold plasma sputtering. Optimization of preparative conditions allowed a fine tuning of Pt NPs size, loading and distribution and thus a controlled tailoring of g-CN/Pt interfacial interactions. Modulation of such features yielded g-CN-Pt-based anode materials with appealing activity and stability towards the ethanol oxidation reaction (EOR) in alkaline aqueous solutions, as revealed by electrochemical tests both in the dark and under irradiation. The present results provide new insights on the design of nano-engineered heterocomposites featuring improved performances thanks to Pt coupling with g-CN, a low-cost and environmentally friendly visible light-active semiconductor. Overall, this work might open attractive avenues for the generation of green hydrogen via aqueous ethanol electrolysis and the photo-promoted alcohol electrooxidation in fuel cells.

6.
ChemSusChem ; : e202400948, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979913

RESUMO

The development of low-cost and high-efficiency oxygen evolution reaction (OER) photoelectrocatalysts is a key requirement for H2 generation via solar-assisted water splitting. In this study, we report on an amenable fabrication route to carbon cloth-supported graphitic carbon nitride (gCN) nanoarchitectures, featuring a modular dispersion of NiO as co-catalyst. The synergistic interaction between gCN and NiO, along with the tailoring of their size and spatial distribution, yield very attractive OER performances and durability in freshwater splitting, of great significance for practical end-uses. The potential of gCN electrocatalysts containing ultra-dispersed, i. e. "quasi-atomic" NiO, exhibiting a higher activity than the ones containing nickel oxide nanoaggregates, is further highlighted by their activity even in real seawater. This work suggests that efficient OER catalysts can be designed through the construction of optimized interfaces between transition metal oxides and carbon nitride, yielding inexpensive and promising noble metal-free systems for real-world applications.

7.
RSC Adv ; 14(10): 7221-7228, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419682

RESUMO

In this work, we propose an original and potentially scalable synthetic route for the fabrication of CuxO-gCN-TiO2-Au (x = 1,2) nanoarchitectures, based on Cu foam anodization, graphitic carbon nitride liquid-phase deposition, and TiO2/Au sputtering. A thorough chemico-physical characterization by complementary analytical tools revealed the formation of nanoarchitectures featuring an intimate contact between the system components and a high dispersion of gold nanoparticles. Modulation of single component interplay yielded excellent functional performances in photoactivated hydrogen evolution, corresponding to a photocurrent of ≈-5.7 mA cm-2 at 0.0 V vs. the reversible hydrogen electrode (RHE). These features, along with the very good service life, represent a cornerstone for the conversion of natural resources, as water and largely available sunlight, into added-value solar fuels.

8.
J Nanosci Nanotechnol ; 13(7): 4962-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901517

RESUMO

Supported fluorine-doped alpha-Fe2O3 nanomaterials were synthesized by Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) at temperatures between 300 and 500 degrees C, using a fluorinated iron(II) diketonate-diamine compound as a single-source precursor for both Fe and F. The system structure, morphology and composition were thoroughly investigated by various characterization techniques, highlighting the possibility of controlling the fluorine doping level by varying the sole growth temperature. Photocatalytic H2 production from water/ethanol solutions under simulated solar irradiation evidenced promising gas evolution rates, candidating the present PE-CVD approach as a valuable strategy to fabricate highly active supported materials.


Assuntos
Flúor/química , Flúor/efeitos da radiação , Hidrogênio/química , Hidrogênio/isolamento & purificação , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/efeitos da radiação , Luz , Teste de Materiais , Fotoquímica/métodos
9.
ACS Appl Mater Interfaces ; 15(40): 47368-47380, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769189

RESUMO

The design and fabrication of eco-friendly and cost-effective (photo)electrocatalysts for the oxygen evolution reaction (OER) is a key research goal for a proper management of water splitting to address the global energy crisis. In this work, we focus on the preparation of supported MnO2/graphitic carbon nitride (g-CN) OER (photo)electrocatalysts by means of a novel preparation strategy. The proposed route consists of the plasma enhanced-chemical vapor deposition (PE-CVD) of MnO2 nanoarchitectures on porous Ni scaffolds, the anchoring of controllable g-CN amounts by an amenable electrophoretic deposition (EPD) process, and the ultimate thermal treatment in air. The inherent method versatility and flexibility afforded defective MnO2/g-CN nanoarchitectures, featuring a g-CN content and nano-organization tunable as a function of EPD duration and the used carbon nitride precursor. Such a modulation had a direct influence on OER functional performances, which, for the best composite system, corresponded to an overpotential of 430 mV at 10 mA/cm2, a Tafel slope of ≈70 mV/dec, and a turnover frequency of 6.52 × 10-3 s-1, accompanied by a very good time stability. The present outcomes, comparing favorably with previous results on analogous systems, were rationalized on the basis of the formation of type-II MnO2/g-CN heterojunctions, and yield valuable insights into this class of green (photo)electrocatalysts for end uses in solar-to-fuel conversion and water treatment.

10.
Nanomaterials (Basel) ; 13(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985929

RESUMO

Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.

11.
Dalton Trans ; 52(31): 10677-10688, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337724

RESUMO

NiO-based films and nanostructured materials have received increasing attention for a variety of technological applications. Among the possible strategies for their fabrication, atomic layer deposition (ALD) and chemical vapor deposition (CVD), featuring manifold advantages of technological interest, represent appealing molecule-to-material routes for which a rational precursor design is a critical step. In this context, the present study is focused on the coordination sphere engineering of three heteroleptic Ni(II) ß-diketonate-diamine adducts of general formula [NiL2TMEDA] [L = 1,1,1-trifluoro-2,4-pentanedionate (tfa), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionate (fod) or 2,2,6,6-tetramethyl-3,5-heptanedionate (thd), and TMEDA = N,N,N',N'-tetramethylethylenediamine]. Controlled variations in the diketonate structure are pursued to investigate the influence of steric hindrance and fluorination degree on the chemico-physical characteristics of the compounds. A multi-technique investigation supported by density functional calculations highlights that all complexes are air-insensitive and monomeric and that their thermal properties and fragmentation patterns are directly dependent on functional groups in the diketonate ligands. Preliminary thermal CVD experiments demonstrate the precursors' suitability for the obtainment of NiO films endowed with flat and homogeneous surfaces, paving the way to future implementation for CVD end-uses.

12.
Chemphyschem ; 13(17): 3798-801, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23097215

RESUMO

The other polymorph: A vapor-phase route for the fabrication of ß-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the ß polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability.


Assuntos
Fontes de Energia Elétrica , Compostos Férricos/química , Gases/química , Lítio/química , Nanoestruturas/química , Eletrodos , Íons/química
13.
Chemphyschem ; 13(9): 2342-8, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22532392

RESUMO

CuO/ZnO nanocomposites were synthesized on Al(2)O(3) substrates by a hybrid plasma-assisted approach, combining the initial growth of ZnO columnar arrays by plasma-enhanced chemical vapor deposition (PE-CVD) and subsequent radio frequency (RF) sputtering of copper, followed by final annealing in air. Chemical, morphological, and structural analyses revealed the formation of high-purity nanosystems, characterized by a controllable dispersion of CuO particles into ZnO matrices. The high surface-to-volume ratio of the obtained materials, along with intimate CuO/ZnO intermixing, resulted in the efficient detection of various oxidizing and reducing gases (such as O(3), CH(3)CH(2)OH, and H(2)). The obtained data are critically discussed and interrelated with the chemical and physical properties of the nanocomposites.

14.
Nanotechnology ; 23(2): 025502, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22166305

RESUMO

Ag/ZnO nanocomposites supported on polycrystalline Al2O3 were synthesized by an unprecedented approach combining plasma enhanced chemical vapor deposition (PE-CVD) of ZnO matrices and the subsequent deposition of Ag nanoparticles (NPs) by radio frequency (RF) sputtering. The system structure, composition and morphology were investigated by glancing incidence x-ray diffraction (GIXRD), secondary ion mass spectrometry (SIMS), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDXS). A tailored dispersion and distribution of silver particles could be obtained under mild conditions by the sole variation of the sputtering time. Gas sensing properties toward flammable and toxic gases, both reducing (CH3CH2OH, CH3COCH3) and oxidizing (O3), were investigated in the temperature range 100-400 °C. Beside the high sensitivity, the developed sensors exhibited a response proportional to Ag content, thanks to catalytic and electronic effects promoted by silver NPs. In addition, discrimination between oxidizing and reducing analytes was enabled by a suitable choice of the adopted working temperature.


Assuntos
Gases/análise , Nanoestruturas/química , Prata/química , Óxido de Zinco/química
15.
J Am Chem Soc ; 133(48): 19362-5, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22053896

RESUMO

p-Type Co(3)O(4) nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H(2) from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co(3)O(4) results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co(3)O(4) films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.


Assuntos
Cobalto/química , Etanol/química , Flúor/química , Hidrogênio/química , Nanoestruturas/química , Óxidos/química , Água/química , Catálise , Luz , Processos Fotoquímicos , Semicondutores
16.
Chemistry ; 17(39): 10864-70, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21853489

RESUMO

Cu(x)O (x=1,2) nanomaterials with tailored composition and properties-a hot topic in sustainable technologies-may be fabricated from molecular sources through bottom-up processes that involve unexpected changes in the metal oxidation state and open intriguing challenges on the copper redox chemistry. How copper(II) sources may lead to copper(I) species in spite of the absence of any explicit reducing agent, and even in the presence of oxygen, is one such question-to date unanswered. Herein, we study copper "reduction without reductants" within one molecule and reveal that the actual reducing agent is abstracted atomic hydrogen. By investigating the fragmentation of a copper(II) precursor for copper oxide nanostructures by combined ESI-MS with multiple collisional experiments (ESI/MS(n)) and theoretical calculations, we highlight a copper-promoted C-H bond activation, leading to reduction of the metal center and formation of a Cu(I)-C-NCCN six-membered ring. Such a novel ring system is the structural motif for a new family of cyclic copper(I) adducts, which show a bonding scheme, herein reported for the first time, that may shed unprecedented light on copper chemistry. Beyond the relevance for the preparation of copper oxide nanostructures, the hydrogen-abstraction/proton-delivery/electron-gain mechanism of copper(II) reduction disclosed herein appears to be a general property of copper and might help to understand its redox reactivity.

17.
Langmuir ; 27(10): 6409-17, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21517025

RESUMO

We report on the fabrication of Cu(x)O-TiO(2) (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous Cu(x)O matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO(2) nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400-550 °C under wet oxygen atmospheres, adopting Cu(hfa)(2)·TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) and Ti(O-(i)Pr)(2)(dpm)(2) (O-(i)Pr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial Cu(x)O matrix and on the deposited TiO(2) amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.

18.
J Nanosci Nanotechnol ; 11(9): 8206-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097556

RESUMO

Plasma processing represents an attractive and versatile option for the fabrication of low-dimensional nanomaterials, whose chemical and physical properties can be conveniently tailored for the development of advanced technologies. In particular, Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) is an appealing route to multi-functional oxide nanoarchitectures under relatively mild conditions, owing to the unique features and activation mechanisms of non-equilibrium plasmas. In this context, the potential of plasma-assisted fabrication in advanced nanosystem development is discussed. After a brief introduction on the basic categories of plasma approaches, the perspectives of application to CVD processes are commented, reporting on the growth and characterization of Co3O4 nanomaterials as a case study. Besides examining the interrelations between the material properties and the synthesis conditions, special focus is given to their emerging applications as catalysts for photo-assisted hydrogen production and solid state gas sensors.

19.
J Nanosci Nanotechnol ; 11(4): 3235-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776692

RESUMO

Self-assembled molecular thin films of melamine-bridged bis-porphyrin dyad, both in free form, P(H2)P(H2), or as Zn(II) metallated complex, P(Zn)P(Zn), were deposited on crystalline Si(100) by soaking or drop-casting techniques. The influence of the adopted preparation methodology, the substrate surface pre-activation procedure and the used solvent (THF or CHCl3) on the morphology and surface coverage of the resulting films was investigated by FE-SEM (Field Emission-Scanning Electron Microscopy) and AFM (Atomic Force Microscopy). The chemical composition and electronic structure of the most promising systems were also addressed by XPS (X-ray Photoelectron Spectroscopy). The results pointed out that an accurate tuning of porphyrin-porphyrin, porphyrin-substrate and porphyrin-solvent molecular interactions allow to tailor the morphogenesis and chemico-physical properties of the final self-assembled films. In addition, preliminary gas sensing tests evidenced the potential of the present porphyrin-based films for the development of new molecular sensing devices.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Porfirinas/química , Silício/química , Adsorção , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
20.
J Nanosci Nanotechnol ; 11(9): 8094-100, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097536

RESUMO

In2O3 thin films were grown by atomic vapor deposition (AVD) on Si(100) and glass substrates from a tris-guanidinate complex of indium [In(N(i)Pr2guanid)3] under an oxygen atmosphere. The effects of the growth temperature on the structure, morphology and composition of In2O3 films were investigated. X-ray diffraction (XRD) measurements revealed that In2O3 films deposited in the temperature range 450-700 degreesC crystallised in the cubic phase. The film morphology, studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), was strongly dependent on the substrate temperature. Stoichiometric In2O3 films were formed under optimised processing conditions as was confirmed by X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), as well as by Rutherford backscattering spectrometry (RBS). Finally, optical properties were investigated by photoluminescence (PL) measurements, spectroscopic ellipsometry (SE) and optical absorption. In2O3 films grown on glass exhibited excellent transparency (approximately 90%) in the Visible (Vis) spectral region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA