Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 311(7): 151533, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34425494

RESUMO

Hybrid Shiga toxin (Stx)-producing Escherichia coli (STEC) and uropathogenic E. coli (UPEC) strains are phylogenetically positioned between STEC and UPEC and can cause both diarrhea and urinary tract infections (UTIs). However, their virulence properties and adaptation to different host milieu in comparison to canonical UPEC and STEC strains are unknown. We determined phenotypes of the STEC/UPEC hybrid with respect to virulence including acid resistance, motility, biofilm formation, siderophore production, and adherence to human colonic Caco-2 and bladder T24 cells and compared to phenotypes of commensal strain MG1655, UPEC strain 536, and STEC strains B2F1 and Sakai. Moreover, we assessed the adaptation of the hybrid to artificial urine medium (AUM) and simulated colonic environment medium (SCEM). Overall acid resistance at pH 2.5 was high except in strains B2F1 and hybrid 05-00787 which showed reduced and extremely low acid resistance, respectively. Motility was reduced in hybrid 05-00787 and 09-05501 but strong in the remaining hybrids. While some hybrids showed high biofilm formation in LB, overall biofilm formation in SCEM and AUM were low and non-existent, respectively. All strains tested showed siderophore activity at equilibrium. All strains except MG1655 adhered to Caco-2 cells with the hybrid having similar adherence when compared to 536 but exhibited 2 and 3 times lower adherence when compared to B2F1 and Sakai, respectively. All Stx-producing strains adhered stronger to T24 cells than strains 536 and MG1655. Overall growth in LB, SCEM and AUM was consistent within the hybrid strains, except hybrid 05-00787 which showed significantly different growth patterns. Our data suggest that the hybrid is adapted to both, the intestinal and extraintestinal milieu. Expression of phenotypes typical of intestinal and extraintestinal pathogens thereby supports its potential to cause diarrhea and UTI.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Escherichia coli Uropatogênica , Células CACO-2 , Proteínas de Escherichia coli/genética , Humanos , Fenótipo , Toxina Shiga/genética , Escherichia coli Uropatogênica/genética
2.
J Clin Microbiol ; 58(1)2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31619530

RESUMO

Hybrid Shiga toxin-producing Escherichia coli (STEC) and uropathogenic E. coli (UPEC) strains of multilocus sequence type 141 (ST141) cause both urinary tract infections and diarrhea in humans and are phylogenetically positioned between STEC and UPEC strains. We used comparative genomic analysis of 85 temporally and spatially diverse ST141 E. coli strains, including 14 STEC/UPEC hybrids, collected in Germany (n = 13) and the United States (n = 1) to reconstruct their molecular evolution. Whole-genome sequencing data showed that 89% of the ST141 E. coli strains either were STEC/UPEC hybrids or contained a mixture of virulence genes from other pathotypes. Core genome analysis and ancestral reconstruction revealed that the ST141 E. coli strains clustered into two lineages that evolved from a common ancestor in the mid-19th century. The STEC/UPEC hybrid emerged ∼100 years ago by acquiring an stx prophage, which integrated into previously unknown insertion site between rcsB and rcsD, followed by the insertion of a pathogenicity island (PAI) similar to PAI II of UPEC strain 536 (PAI II536-like). The two variants of PAI II536-like were associated with tRNA genes leuX and pheU, respectively. Finally, microevolution within PAI II536-like and acquisition of the enterohemorrhagic E. coli plasmid were observed. Our data suggest that intestinal pathogenic E. coli (IPEC)/extraintestinal pathogenic E. coli (ExPEC) hybrids are widespread and that selection pressure within the ST141 E. coli population led to the emergence of the STEC/UPEC hybrid as a clinically important subgroup. We hypothesize that ST141 E. coli strains serve as a melting pot for pathogroup conversion between IPEC and ExPEC, contrasting the classical theory of pathogen emergence from nonpathogens and corroborating our recent phenomenon of heteropathogenicity among pathogenic E. coli strains.


Assuntos
Infecções por Escherichia coli/microbiologia , Evolução Molecular , Hibridização Genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Uropatogênica/genética , Genoma Bacteriano , Genômica/métodos , Humanos , Filogenia , Virulência/genética , Fatores de Virulência/genética
3.
Evol Med Public Health ; 9(1): 383-392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925844

RESUMO

Research in infection biology aims to understand the complex nature of host-pathogen interactions. While this knowledge facilitates strategies for preventing and treating diseases, it can also be intentionally misused to cause harm. Such dual-use risk is potentially high for highly pathogenic microbes such as Risk Group-3 (RG3) bacteria and RG4 viruses, which could be used in bioterrorism attacks. However, other pathogens such as influenza virus (IV) and enterohemorrhagic Escherichia coli (EHEC), usually classified as RG2 pathogens, also demonstrate high dual-use risk. As the currently approved therapeutics against these pathogens are not satisfactorily effective, previous outbreaks of these pathogens caused enormous public fear, media attention and economic burden. In this interdisciplinary review, we summarize the current perspectives of dual-use research on IV and EHEC, and further highlight the dual-use risk associated with evolutionary experiments with these infectious pathogens. We support the need to carry out experiments pertaining to pathogen evolution, including to gain predictive insights on their evolutionary trajectories, which cannot be otherwise achieved with stand-alone theoretical models and epidemiological data. However, we also advocate for increased awareness and assessment strategies to better quantify the risks-versus-benefits associated with such evolutionary experiments. In addition to building public trust in dual-use research, we propose that these approaches can be extended to other pathogens currently classified as low risk, but bearing high dual-use potential, given the particular pressing nature of their rapid evolutionary potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA