Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
EMBO Rep ; 25(8): 3276-3299, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039298

RESUMO

Transmigration of circulating monocytes from the bloodstream to tissues represents an early hallmark of inflammation. This process plays a pivotal role during viral neuroinvasion, encephalitis, and HIV-associated neurocognitive disorders. How monocytes locally unzip endothelial tight junction-associated proteins (TJAPs), without perturbing impermeability, to reach the central nervous system remains poorly understood. Here, we show that human circulating monocytes express the TJAP Occludin (OCLN) to promote transmigration through endothelial cells. We found that human monocytic OCLN (hmOCLN) clusters at monocyte-endothelium interface, while modulation of hmOCLN expression significantly impacts monocyte transmigration. Furthermore, we designed OCLN-derived peptides targeting its extracellular loops (EL) and show that transmigration of treated monocytes is inhibited in vitro and in zebrafish embryos, while preserving vascular integrity. Monocyte transmigration toward the brain is an important process for HIV neuroinvasion and we found that the OCLN-derived peptides significantly inhibit HIV dissemination to cerebral organoids. In conclusion, our study identifies an important role for monocytic OCLN during transmigration and provides a proof-of-concept for the development of mitigation strategies to prevent monocyte infiltration and viral neuroinvasion.


Assuntos
Células Endoteliais , Monócitos , Ocludina , Migração Transendotelial e Transepitelial , Peixe-Zebra , Ocludina/metabolismo , Ocludina/genética , Humanos , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/virologia , Animais , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Endoteliais/efeitos dos fármacos , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia
2.
EMBO Rep ; 24(4): e55971, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856136

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium causing morbidity and mortality in immuno-compromised humans. It produces a lectin, LecB, that is considered a major virulence factor, however, its impact on the immune system remains incompletely understood. Here we show that LecB binds to endothelial cells in human skin and mice and disrupts the transendothelial passage of leukocytes in vitro. It impairs the migration of dendritic cells into the paracortex of lymph nodes leading to a reduced antigen-specific T cell response. Under the effect of the lectin, endothelial cells undergo profound cellular changes resulting in endocytosis and degradation of the junctional protein VE-cadherin, formation of an actin rim, and arrested cell motility. This likely negatively impacts the capacity of endothelial cells to respond to extracellular stimuli and to generate the intercellular gaps for allowing leukocyte diapedesis. A LecB inhibitor can restore dendritic cell migration and T cell activation, underlining the importance of LecB antagonism to reactivate the immune response against P. aeruginosa infection.


Assuntos
Pseudomonas aeruginosa , Migração Transendotelial e Transepitelial , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Lectinas/metabolismo , Lectinas/farmacologia , Imunidade
3.
Cell Mol Life Sci ; 80(9): 266, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624561

RESUMO

The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood. Here, we employed the retention using selective hooks (RUSH) system to show that newly-synthesised SHH is trafficked through the classical biosynthetic secretory pathway, using TMED10 as an endoplasmic reticulum (ER) cargo receptor for efficient ER-to-Golgi transport and Rab6 vesicles for Golgi-to-cell surface trafficking. TMED10 and SHH colocalized at ER exit sites (ERES), and TMED10 depletion significantly delays SHH loading onto ERES and subsequent exit leading to significant SHH release defects. Finally, we utilised the Drosophila wing imaginal disc model to demonstrate that the homologue of TMED10, Baiser (Bai), participates in Hedgehog (Hh) secretion and signalling in vivo. In conclusion, our work highlights the role of TMED10 in cargo-specific egress from the ER and sheds light on novel important partners of neosynthesised SHH secretion with potential impact on embryonic development.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Feminino , Animais , Proteínas Hedgehog/genética , Membrana Celular , Drosophila , Via Secretória , Mamíferos
4.
Hepatology ; 76(4): 1164-1179, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388524

RESUMO

BACKGROUND AND AIMS: Numerous HCV entry factors have been identified, and yet information regarding their spatiotemporal dynamics is still limited. Specifically, one of the main entry factors of HCV is occludin (OCLN), a protein clustered at tight junctions (TJs), away from the HCV landing site. Thus, whether HCV particles slide toward TJs or, conversely, OCLN is recruited away from TJs remain debated. APPROACH AND RESULTS: Here, we generated CRISPR/CRISPR-associated protein 9 edited Huh7.5.1 cells expressing endogenous levels of enhanced green fluorescent protein/OCLN and showed that incoming HCV particles recruit OCLN outside TJs, independently of claudin 1 (CLDN1) expression, another important HCV entry factor located at TJs. Using ex vivo organotypic culture of hepatic slices obtained from human liver explants, a physiologically relevant model that preserves the overall tissue architecture, we confirmed that HCV associates with OCLN away from TJs. Furthermore, we showed, by live cell imaging, that increased OCLN recruitment beneath HCV particles correlated with lower HCV motility. To decipher the mechanism underlying virus slow-down upon OCLN recruitment, we performed CRISPR knockout (KO) of CLDN1, an HCV entry factor proposed to act upstream of OCLN. Although CLDN1 KO potently inhibits HCV infection, OCLN kept accumulating underneath the particle, indicating that OCLN recruitment is CLDN1 independent. Moreover, inhibition of the phosphorylation of Ezrin, a protein involved in HCV entry that links receptors to the actin cytoskeleton, increased OCLN accumulation and correlated with more efficient HCV internalization. CONCLUSIONS: Together, our data provide robust evidence that HCV particles interact with OCLN away from TJs and shed mechanistic insights regarding the manipulation of transmembrane receptor localization by extracellular virus particles.


Assuntos
Hepatite C , Junções Íntimas , Proteína 9 Associada à CRISPR/metabolismo , Claudina-1/genética , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatócitos/metabolismo , Humanos , Ocludina , Vírion , Internalização do Vírus
5.
Nature ; 552(7685): 410-414, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236694

RESUMO

Vesicular carriers transport proteins and lipids from one organelle to another, recognizing specific identifiers for the donor and acceptor membranes. Two important identifiers are phosphoinositides and GTP-bound GTPases, which provide well-defined but mutable labels. Phosphatidylinositol and its phosphorylated derivatives are present on the cytosolic faces of most cellular membranes. Reversible phosphorylation of its headgroup produces seven distinct phosphoinositides. In endocytic traffic, phosphatidylinositol-4,5-biphosphate marks the plasma membrane, and phosphatidylinositol-3-phosphate and phosphatidylinositol-4-phosphate mark distinct endosomal compartments. It is unknown what sequence of changes in lipid content confers on the vesicles their distinct identity at each intermediate step. Here we describe 'coincidence-detecting' sensors that selectively report the phosphoinositide composition of clathrin-associated structures, and the use of these sensors to follow the dynamics of phosphoinositide conversion during endocytosis. The membrane of an assembling coated pit, in equilibrium with the surrounding plasma membrane, contains phosphatidylinositol-4,5-biphosphate and a smaller amount of phosphatidylinositol-4-phosphate. Closure of the vesicle interrupts free exchange with the plasma membrane. A substantial burst of phosphatidylinositol-4-phosphate immediately after budding coincides with a burst of phosphatidylinositol-3-phosphate, distinct from any later encounter with the phosphatidylinositol-3-phosphate pool in early endosomes; phosphatidylinositol-3,4-biphosphate and the GTPase Rab5 then appear and remain as the uncoating vesicles mature into Rab5-positive endocytic intermediates. Our observations show that a cascade of molecular conversions, made possible by the separation of a vesicle from its parent membrane, can label membrane-traffic intermediates and determine their destinations.


Assuntos
Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Auxilinas/metabolismo , Células COS , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Invaginações Revestidas da Membrana Celular/química , Endossomos/química , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/análise , Fosfatidilinositóis/química , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
6.
BMC Public Health ; 22(1): 1279, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778679

RESUMO

BACKGROUND: With more than 160 000 confirmed COVID-19 cases and about 30 000 deceased people at the end of June 2020, France was one of the countries most affected by the coronavirus crisis worldwide. We aim to assess the efficiency of global lockdown policy in limiting spatial contamination through an in-depth reanalysis of spatial statistics in France during the first lockdown and immediate post-lockdown phases. METHODS: To reach that goal, we use an integrated approach at the crossroads of geography, spatial epidemiology, and public health science. To eliminate any ambiguity relevant to the scope of the study, attention focused at first on data quality assessment. The data used originate from official databases (Santé Publique France) and the analysis is performed at a departmental level. We then developed spatial autocorrelation analysis, thematic mapping, hot spot analysis, and multivariate clustering. RESULTS: We observe the extreme heterogeneity of local situations and demonstrate that clustering and intensity are decorrelated indicators. Thematic mapping allows us to identify five "ghost" clusters, whereas hot spot analysis detects two positive and two negative clusters. Our re-evaluation also highlights that spatial dissemination follows a twofold logic, zonal contiguity and linear development, thus determining a "metastatic" propagation pattern. CONCLUSIONS: One of the most problematic issues about COVID-19 management by the authorities is the limited capacity to identify hot spots. Clustering of epidemic events is often biased because of inappropriate data quality assessment and algorithms eliminating statistical-spatial outliers. Enhanced detection techniques allow for a better identification of hot and cold spots, which may lead to more effective political decisions during epidemic outbreaks.


Assuntos
COVID-19 , COVID-19/epidemiologia , Análise por Conglomerados , Controle de Doenças Transmissíveis , Surtos de Doenças , Humanos , Saúde Pública
7.
Biol Cell ; 112(5): 140-151, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034780

RESUMO

BACKGROUND INFORMATION: Claudin-1 (CLDN1) is a four-span transmembrane protein localised at cell-cell tight junctions (TJs), playing an important role in epithelial impermeability and tissue homoeostasis under physiological conditions. Moreover, CLDN1 expression is up-regulated in several cancers, and the level of CLDN1 expression has been proposed as a prognostic marker of patient survival. RESULTS: Here, we generated and characterised a novel reporter cell line expressing endogenous fluorescent levels of CLDN-1, allowing dynamic monitoring of CLDN-1 expression levels. Specifically, a hepatocellular carcinoma Huh7.5.1 monoclonal cell line was bioengineered using CRISPR/Cas9 to endogenously express a fluorescent TagRFP-T protein fused at the N-terminus of the CLDN1 protein. These cells were proved useful to measure CLDN1 expression and distribution in live cells. However, the cells were resistant to hepatitis C virus (HCV) infection, of which CLDN1 is a viral receptor, while retaining permissiveness to VSV-G-decorated pseudoparticles. Nonetheless, the TagRFP-CLDN1+/+ cell line showed expected CLDN1 protein localisation at TJs and the cell monolayer had similar impermeability and polarisation features as its wild-type counterpart. Finally, using fluorescence recovery after photobleaching (FRAP) approaches, we measured that the majority of endogenous and overexpressed TagRFP-CLDN1 diffuses rapidly within the TJ, whereas half of the overexpressed EGFP-CLDN1 proteins were stalled at TJs. CONCLUSIONS: The Huh7.5.1 TagRFP-CLDN1+/+ edited cell line showed physiological features comparable to that of non-edited cells, but became resistant to HCV infection. Our data also highlight the important impact of the fluorescent protein chosen for endogenous tagging. SIGNIFICANCE: Although HCV-related studies may not be achieved with these cells, our work provides a novel tool to study the cell biology of TJ-associated proteins and a potential screening strategy measuring CLDN1 expression levels.


Assuntos
Claudina-1/metabolismo , Técnicas de Introdução de Genes , Hepacivirus/fisiologia , Hepatócitos/metabolismo , Internalização do Vírus , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Movimento Celular , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia
9.
Int J Cancer ; 142(1): 133-144, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28884480

RESUMO

Human blood monocytes are very potent to take up antigens. Like macrophages in tissue, they efficiently degrade exogenous protein and are less efficient than dendritic cells (DCs) at cross-presenting antigens to CD8+ T cells. Although it is generally accepted that DCs take up tissue antigens and then migrate to lymph nodes to prime T cells, the mechanisms of presentation of antigens taken up by monocytes are poorly documented so far. In the present work, we show that monocytes loaded in vitro with MelanA long peptides retain the capacity to stimulate antigen-specific CD8+ T cell clones after 5 days of differentiation into monocytes-derived dendritic cells (MoDCs). Tagged-long peptides can be visualized in electron-dense endocytic compartments distinct from lysosomes, suggesting that antigens can be protected from degradation for extended periods of time. To address the pathophysiological relevance of these findings, we screened blood monocytes from 18 metastatic melanoma patients and found that CD14+ monocytes from two patients effectively activate a MelanA-specific CD8 T cell clone after in vitro differentiation into MoDCs. This in vivo sampling of tumor antigen by circulating monocytes might alter the tumor-specific immune response and should be taken into account for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Antígeno MART-1/imunologia , Melanoma/imunologia , Monócitos/imunologia , Apresentação de Antígeno/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Humanos , Monócitos/citologia
10.
J Virol ; 90(9): 4494-4510, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912630

RESUMO

UNLABELLED: Virus entry into cells is a multistep process that often requires the subversion of subcellular machineries. A more complete understanding of these steps is necessary to develop new antiviral strategies. While studying the potential role of the actin network and one of its master regulators, the small GTPase Cdc42, during Junin virus (JUNV) entry, we serendipitously uncovered the small molecule ZCL278, reported to inhibit Cdc42 function as an entry inhibitor for JUNV and for vesicular stomatitis virus, lymphocytic choriomeningitis virus, and dengue virus but not for the nonenveloped poliovirus. Although ZCL278 did not interfere with JUNV attachment to the cell surface or virus particle internalization into host cells, it prevented the release of JUNV ribonucleoprotein cores into the cytosol and decreased pH-mediated viral fusion with host membranes. We also identified SVG-A astroglial cell-derived cells to be highly permissive for JUNV infection and generated new cell lines expressing fluorescently tagged Rab5c or Rab7a or lacking Cdc42 using clustered regularly interspaced short palindromic repeat (CRISPR)-caspase 9 (Cas9) gene-editing strategies. Aided by these tools, we uncovered that perturbations in the actin cytoskeleton or Cdc42 activity minimally affect JUNV entry, suggesting that the inhibitory effect of ZCL278 is not mediated by ZCL278 interfering with the activity of Cdc42. Instead, ZCL278 appears to redistribute viral particles from endosomal to lysosomal compartments. ZCL278 also inhibited JUNV replication in a mouse model, and no toxicity was detected. Together, our data suggest the unexpected antiviral activity of ZCL278 and highlight its potential for use in the development of valuable new tools to study the intracellular trafficking of pathogens. IMPORTANCE: The Junin virus is responsible for outbreaks of Argentine hemorrhagic fever in South America, where 5 million people are at risk. Limited options are currently available to treat infections by Junin virus or other viruses of the Arenaviridae, making the identification of additional tools, including small-molecule inhibitors, of great importance. How Junin virus enters cells is not yet fully understood. Here we describe new cell culture models in which the cells are susceptible to Junin virus infection and to which we applied CRISPR-Cas9 genome engineering strategies to help characterize early steps during virus entry. We also uncovered ZCL278 to be a new antiviral small molecule that potently inhibits the cellular entry of the Junin virus and other enveloped viruses. Moreover, we show that ZCL278 also functions in vivo, thereby preventing Junin virus replication in a mouse model, opening the possibility for the discovery of ZCL278 derivatives of therapeutic potential.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Descoberta de Drogas , Tioureia/análogos & derivados , Internalização do Vírus/efeitos dos fármacos , Actinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Clatrina/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/virologia , Técnicas de Inativação de Genes , Febre Hemorrágica Americana/genética , Febre Hemorrágica Americana/metabolismo , Febre Hemorrágica Americana/virologia , Humanos , Vírus Junin/efeitos dos fármacos , Vírus Junin/fisiologia , Camundongos , Ligação Proteica , Transporte Proteico , Proteólise , Ribonucleoproteínas/metabolismo , Tioureia/farmacologia , Carga Viral , Proteínas Virais/metabolismo , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA