Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 262(1): 90-104, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37929635

RESUMO

Crosstalk between cancer and stellate cells is pivotal in pancreatic cancer, resulting in differentiation of stellate cells into myofibroblasts that drives tumour progression. To assess cooperative mechanisms in a 3D context, we generated chimeric spheroids using human and mouse cancer and stellate cells. Species-specific deconvolution of bulk-RNA sequencing data revealed cell type-specific transcriptomes underpinning invasion. This dataset highlighted stellate-specific expression of transcripts encoding the collagen-processing enzymes ADAMTS2 and ADAMTS14. Strikingly, loss of ADAMTS2 reduced, while loss of ADAMTS14 promoted, myofibroblast differentiation and invasion independently of their primary role in collagen-processing. Functional and proteomic analysis demonstrated that these two enzymes regulate myofibroblast differentiation through opposing roles in the regulation of transforming growth factor ß availability, acting on the protease-specific substrates, Serpin E2 and fibulin 2, for ADAMTS2 and ADAMTS14, respectively. Showcasing a broader complexity for these enzymes, we uncovered a novel regulatory axis governing malignant behaviour of the pancreatic cancer stroma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Miofibroblastos , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Diferenciação Celular , Colágeno/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/patologia , Proteômica
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675222

RESUMO

The extracellular matrix (ECM) of the lung is a filamentous network composed mainly of collagens, elastin, and proteoglycans that provides structural and physical support to its populating cells. Proliferation, migration and overall behaviour of those cells is greatly determined by micromechanical queues provided by the ECM. Lung fibrosis displays an aberrant increased deposition of ECM which likely changes filament organization and stiffens the ECM, thus upregulating the profibrotic profile of pulmonary cells. We have previously used AFM to assess changes in the Young's Modulus (E) of the ECM in the lung. Here, we perform further ECM topographical, mechanical and viscoelastic analysis at the micro- and nano-scale throughout fibrosis development. Furthermore, we provide nanoscale correlations between topographical and elastic properties of the ECM fibres. Firstly, we identify a softening of the ECM after rats are instilled with media associated with recovery of mechanical homeostasis, which is hindered in bleomycin-instilled lungs. Moreover, we find opposite correlations between fibre stiffness and roughness in PBS- vs bleomycin-treated lung. Our findings suggest that changes in ECM nanoscale organization take place at different stages of fibrosis, with the potential to help identify pharmacological targets to hinder its progression.


Assuntos
Matriz Extracelular , Fibrose Pulmonar Idiopática , Ratos , Animais , Matriz Extracelular/patologia , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fibrose , Bleomicina
3.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563279

RESUMO

One of the main limitations of in vitro studies on lung diseases is the difficulty of maintaining the type II phenotype of alveolar epithelial cells in culture. This fact has previously been related to the translocation of the mechanosensing Yes-associated protein (YAP) to the nuclei and Rho signaling pathway. In this work, we aimed to culture and subculture primary alveolar type II cells on extracellular matrix lung-derived hydrogels to assess their suitability for phenotype maintenance. Cells cultured on lung hydrogels formed monolayers and maintained type II phenotype for a longer time as compared with those conventionally cultured. Interestingly, cells successfully grew when they were subsequently cultured on a dish. Moreover, cells cultured on a plate showed the active form of the YAP protein and the formation of stress fibers and focal adhesions. The results of chemically inhibiting the Rho pathway strongly suggest that this is one of the mechanisms by which the hydrogel promotes type II phenotype maintenance. These results regarding protein expression strongly suggest that the chemical and biophysical properties of the hydrogel have a considerable impact on the transition from ATII to ATI phenotypes. In conclusion, culturing primary alveolar epithelial cells on lung ECM-derived hydrogels may facilitate the prolonged culturing of these cells, and thus help in the research on lung diseases.


Assuntos
Células Epiteliais Alveolares , Pneumopatias , Células Epiteliais Alveolares/metabolismo , Células Cultivadas , Células Epiteliais , Matriz Extracelular , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Pulmão , Pneumopatias/metabolismo , Fenótipo
4.
Plant Cell Physiol ; 62(2): 306-320, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33386853

RESUMO

The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb (tomato similar to SB401) gene, belonging to a Solanaceae group of genes encoding MT-associated proteins (MAPs) for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb overexpressing (OE) roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells OE tsb revealed that TSB is involved in MT bundling. Taken together, our results provide unprecedented insights into the role of novel MAP in MT rearrangements throughout the different stages of the arbuscule life cycle.


Assuntos
Microtúbulos/fisiologia , Micorrizas/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Microtúbulos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Alinhamento de Sequência , Simbiose
5.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445106

RESUMO

Tissue decellularization is typically assessed through absorbance-based DNA quantification after tissue digestion. This method has several disadvantages, namely its destructive nature and inadequacy in experimental situations where tissue is scarce. Here, we present an image processing algorithm for quantitative analysis of DNA content in (de)cellularized tissues as a faster, simpler and more comprehensive alternative. Our method uses local entropy measurements of a phase contrast image to create a mask, which is then applied to corresponding nuclei labelled (UV) images to extract average fluorescence intensities as an estimate of DNA content. The method can be used on native or decellularized tissue to quantify DNA content, thus allowing quantitative assessment of decellularization procedures. We confirm that our new method yields results in line with those obtained using the standard DNA quantification method and that it is successful for both lung and heart tissues. We are also able to accurately obtain a timeline of decreasing DNA content with increased incubation time with a decellularizing agent. Finally, the identified masks can also be applied to additional fluorescence images of immunostained proteins such as collagen or elastin, thus allowing further image-based tissue characterization.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Colágeno/metabolismo , DNA/metabolismo , Elastina/metabolismo , Matriz Extracelular/metabolismo , Coração/fisiopatologia , Pulmão/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884731

RESUMO

Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro- and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile.


Assuntos
Matriz Extracelular/fisiologia , Mecanotransdução Celular , Fibrose Pulmonar/fisiopatologia , Animais , Bleomicina , Modelos Animais de Doenças , Elasticidade , Masculino , Microscopia de Força Atômica , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585813

RESUMO

The mechanical state of cells is a critical part of their healthy functioning and it is controlled primarily by cytoskeletal networks (actin, microtubules and intermediate filaments). Drug-based strategies targeting the assembly of a given cytoskeletal network are often used to pinpoint their role in cellular function. Unlike actin and microtubules, there has been limited interest in the role of intermediate filaments, and fewer drugs have thus been identified and characterised as modulators of its assembly. Here, we evaluate whether Withaferin-A (WFA), an established disruptor of vimentin filaments, can also be used to modulate keratin filament assembly. Our results show that in keratinocytes, which are keratin-rich but vimentin-absent, Withaferin-A disrupts keratin filaments. Importantly, the dosages required are similar to those previously reported to disrupt vimentin in other cell types. Furthermore, Withaferin-A-induced keratin disassembly is accompanied by changes in cell stiffness and migration. Therefore, we propose that WFA can be repurposed as a useful drug to disrupt the keratin cytoskeleton in epithelial cells.


Assuntos
Actinas/metabolismo , Epiderme/fisiologia , Filamentos Intermediários/fisiologia , Queratinócitos/fisiologia , Queratinas/metabolismo , Vitanolídeos/farmacologia , Células Cultivadas , Epiderme/efeitos dos fármacos , Humanos , Filamentos Intermediários/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos
8.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936668

RESUMO

Ezrin, a member of the ERM (ezrin/radixin/moesin) family of proteins, serves as a crosslinker between the plasma membrane and the actin cytoskeleton. By doing so, it provides structural links to strengthen the connection between the cell cortex and the plasma membrane, acting also as a signal transducer in multiple pathways during migration, proliferation, and endocytosis. In this study, we investigated the role of ezrin phosphorylation and its intracellular localization on cell motility, cytoskeleton organization, and cell stiffness, using fluorescence live-cell imaging, image quantification, and atomic force microscopy (AFM). Our results show that cells expressing constitutively active ezrin T567D (phosphomimetic) migrate faster and in a more directional manner, especially when ezrin accumulates at the cell rear. Similarly, image quantification results reveal that transfection with ezrin T567D alters the cell's gross morphology and decreases cortical stiffness. In contrast, constitutively inactive ezrin T567A accumulates around the nucleus, and although it does not impair cell migration, it leads to a significant buildup of actin fibers, a decrease in nuclear volume, and an increase in cytoskeletal stiffness. Finally, cell transfection with the dominant negative ezrin FERM domain induces significant morphological and nuclear changes and affects actin, microtubules, and the intermediate filament vimentin, resulting in cytoskeletal fibers that are longer, thicker, and more aligned. Collectively, our results suggest that ezrin's phosphorylation state and its intracellular localization plays a pivotal role in cell migration, modulating also biophysical properties, such as membrane-cortex linkage, cytoskeletal and nuclear organization, and the mechanical properties of cells.


Assuntos
Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Fosfotreonina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Fenômenos Biomecânicos , Núcleo Celular/metabolismo , Forma do Núcleo Celular , Proteínas do Citoesqueleto/genética , Camundongos , Mutação/genética , Células NIH 3T3 , Fosforilação , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
9.
Development ; 139(12): 2187-97, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22573615

RESUMO

Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Microtúbulos/metabolismo , Acetilação , Citoesqueleto de Actina/ultraestrutura , Animais , Fenômenos Biomecânicos/fisiologia , Cóclea/fisiologia , Cóclea/ultraestrutura , Fatores de Crescimento de Fibroblastos/metabolismo , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/ultraestrutura , Camundongos , Microscopia de Força Atômica , Modelos Biológicos , Polimerização , Transdução de Sinais , Propriedades de Superfície , Fatores de Tempo
10.
Front Cell Dev Biol ; 12: 1381470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645411

RESUMO

Introduction: Aging induces functional and structural changes in the lung, characterized by a decline in elasticity and diminished pulmonary remodeling and regenerative capacity. Emerging evidence suggests that most biomechanical alterations in the lung result from changes in the composition of the lung extracellular matrix (ECM), potentially modulating the behavior of pulmonary cells and increasing the susceptibility to chronic lung diseases. Therefore, it is crucial to investigate the mechanical properties of the aged lung. This study aims to assess the mechanical alterations in the lung ECM due to aging at both residual (RV) and functional (FV) lung volumes and to evaluate their effects on the survival and proliferation of mesenchymal stromal cells (MSCs). Methods: The lungs from young (4-6-month-old) and aged (20-24-month-old) mice were inflated with optimal cutting temperature compound to reach FV or non-inflated (RV). ECM proteins laminin, collagen I and fibronectin were quantified by immunofluorescence and the mechanical properties of the decellularized lung sections were assessed using atomic force microscopy. To investigate whether changes in ECM composition by aging and/or mechanical properties at RV and FV volumes affects MSCs, their viability and proliferation were evaluated after 72 h. Results: Laminin presence was significantly reduced in aged mice compared to young mice, while fibronectin and collagen I were significantly increased in aged mice. In RV conditions, the acellular lungs from aged mice were significantly softer than from young mice. By contrast, in FV conditions, the aged lung ECM becomes stiffer than that of in young mice, revealing that strain hardening significantly depends on aging. Results after MSCs recellularization showed similar viability and proliferation rate in all conditions. Discussion: This data strongly suggests that biomechanical measurements, especially in aging models, should be carried out in physiomimetic conditions rather than following the conventional non-inflated lung (RV) approach. The use of decellularized lung scaffolds from aged and/or other lung disease murine/human models at physiomimetic conditions will help to better understand the potential role of mechanotransduction on the susceptibility and progression of chronic lung diseases, lung regeneration and cancer.

11.
Front Physiol ; 15: 1356787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434139

RESUMO

Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory.

12.
J R Soc Interface ; 21(211): 20230674, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320600

RESUMO

Nano-indentation techniques might be better equipped to assess the heterogeneous material properties of plaques than macroscopic methods but there are no bespoke protocols for this kind of material testing for coronary arteries. Therefore, we developed a measurement protocol to extract mechanical properties from healthy and atherosclerotic coronary artery tissue sections. Young's modulus was derived from force-indentation data. Metrics of collagen fibre density were extracted from the same tissue, and the local material properties were co-registered to the local collagen microstructure with a robust framework. The locations of the indentation were retrospectively classified by histological category (healthy, plaque, lipid-rich, fibrous cap) according to Picrosirius Red stain and adjacent Hematoxylin & Eosin and Oil-Red-O stains. Plaque tissue was softer (p < 0.001) than the healthy coronary wall. Areas rich in collagen within the plaque (fibrous cap) were significantly (p < 0.001) stiffer than areas poor in collagen/lipid-rich, but less than half as stiff as the healthy coronary media. Young's moduli correlated (Pearson's ρ = 0.53, p < 0.05) with collagen content. Atomic force microscopy (AFM) is capable of detecting tissue stiffness changes related to collagen density in healthy and diseased cardiovascular tissue. Mechanical characterization of atherosclerotic plaques with nano-indentation techniques could refine constitutive models for computational modelling.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Microscopia de Força Atômica , Estudos Retrospectivos , Aterosclerose/patologia , Módulo de Elasticidade , Colágeno , Lipídeos
13.
BMC Dev Biol ; 13: 6, 2013 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-23394545

RESUMO

BACKGROUND: Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. RESULTS: In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. CONCLUSIONS: These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties.


Assuntos
Órgão Espiral/embriologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Hormônios Tireóideos/fisiologia , Fatores de Despolimerização de Actina/fisiologia , Actinas/fisiologia , Animais , Imunofluorescência , Hipotireoidismo/fisiopatologia , Camundongos , Microscopia de Força Atômica , Microtúbulos , Órgão Espiral/citologia , Órgão Espiral/metabolismo , Fosforilação , Transdução de Sinais
14.
Nat Methods ; 7(8): 650-4, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562866

RESUMO

We report an atomic force microscopy (AFM) method for assessing elastic and viscous properties of soft samples at acoustic frequencies under non-contact conditions. The method can be used to measure material properties via frequency modulation and is based on hydrodynamics theory of thin gaps we developed here. A cantilever with an attached microsphere is forced to oscillate tens of nanometers above a sample. The elastic modulus and viscosity of the sample are estimated by measuring the frequency-dependence of the phase lag between the oscillating microsphere and the driving piezo at various heights above the sample. This method features an effective area of pyramidal tips used in contact AFM but with only piconewton applied forces. Using this method, we analyzed polyacrylamide gels of different stiffness and assessed graded mechanical properties of guinea pig tectorial membrane. The technique enables the study of microrheology of biological tissues that produce or detect sound.


Assuntos
Microscopia de Força Atômica/métodos , Reologia/métodos , Acústica , Resinas Acrílicas , Animais , Elasticidade , Cobaias , Microscopia de Força Atômica/instrumentação , Reologia/instrumentação , Membrana Tectorial , Viscosidade
15.
Gels ; 9(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37888407

RESUMO

Decellularized extracellular matrix (dECM) hydrogels have emerged as promising materials in tissue engineering. The steps to produce dECM hydrogels containing the bioactive epitopes found in the native matrix are often laborious, including the initial harvesting and decellularization of the animal organ. Furthermore, resulting hydrogels often exhibit weak mechanical properties that require the use of additional crosslinkers such as genipin to truly simulate the mechanical properties of the desired study tissue. In this work, we have developed a protocol to readily obtain tens of thin dECM hydrogel cryosections attached to a glass slide as support, to serve as scaffolds for two-dimensional (2D) or three-dimensional (3D) cell culture. Following extensive atomic force microscopy (AFM)-based mechanical characterization of dECM hydrogels crosslinked with increasing genipin concentrations (5 mM, 10 mM, and 20 mM), we provide detailed protocol recommendations for achieving dECM hydrogels of any biologically relevant stiffness. Given that our protocol requires hydrogel freezing, we also confirm that the approach taken can be further used to increase the mechanical properties of the scaffold in a controlled manner exhibiting twice the stiffness in highly crosslinked arrays. Finally, we explored the effect of ethanol-based short- and long-term sterilization on dECM hydrogels, showing that in some situations it may give rise to significant changes in hydrogel mechanical properties that need to be taken into account in experimental design. The hydrogel cryosections produced were shown to be biocompatible and support cell attachment and spreading for at least 72 h in culture. In brief, our proposed method may provide several advantages for tissue engineering: (1) easy availability and reduction in preparation time, (2) increase in the total hydrogel volume eventually used for experiments being able to obtain 15-22 slides from a 250 µL hydrogel) with a (3) reduction in scaffold variability (only a 17.5 ± 9.5% intraslide variability provided by the method), and (4) compatibility with live-cell imaging techniques or further cell characterization of cells.

16.
Gels ; 9(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37754426

RESUMO

Since the emergence of 3D bioprinting technology, both synthetic and natural materials have been used to develop bioinks for producing cell-laden cardiac grafts. To this end, extracellular-matrix (ECM)-derived hydrogels can be used to develop scaffolds that closely mimic the complex 3D environments for cell culture. This study presents a novel cardiac bioink based on hydrogels exclusively derived from decellularized porcine myocardium loaded with human-bone-marrow-derived mesenchymal stromal cells. Hence, the hydrogel can be used to develop cell-laden cardiac patches without the need to add other biomaterials or use additional crosslinkers. The scaffold ultrastructure and mechanical properties of the bioink were characterized to optimize its production, specifically focusing on the matrix enzymatic digestion time. The cells were cultured in 3D within the developed hydrogels to assess their response. The results indicate that the hydrogels fostered inter-cell and cell-matrix crosstalk after 1 week of culture. In conclusion, the bioink developed and presented in this study holds great potential for developing cell-laden customized patches for cardiac repair.

17.
Cancers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190331

RESUMO

Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.

18.
Front Bioeng Biotechnol ; 10: 832178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356779

RESUMO

Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue's vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices-with an emphasis on lung-while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies.

19.
Polymers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433034

RESUMO

The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.

20.
Bio Protoc ; 12(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36532689

RESUMO

The study and use of decellularized extracellular matrix (dECM) in tissue engineering, regenerative medicine, and pathophysiology have become more prevalent in recent years. To obtain dECM, numerous decellularization procedures have been developed for the entire organ or tissue blocks, employing either perfusion of decellularizing agents through the tissue's vessels or submersion of large sections in decellularizing solutions. However, none of these protocols are suitable for thin tissue slices (less than 100 µm) or allow side-by-side analysis of native and dECM consecutive tissue slices. Here, we present a detailed protocol to decellularize tissue sections while maintaining the sample attached to a glass slide. This protocol consists of consecutive washes and incubations of simple decellularizing agents: ultrapure water, sodium deoxycholate (SD) 2%, and deoxyribonuclease I solution 0.3 mg/mL (DNase I). This novel method has been optimized for a faster decellularization time (2-3 h) and a better correlation between dECM properties and native tissue-specific biomarkers, and has been tested in different types of tissues and species, obtaining similar results. Furthermore, this method can be used for scarce and valuable samples such as clinical biopsies. This protocol was validated in: Front Bioeng Biotechnol (2022), DOI: 10.3389/fbioe.2022.832178.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA