Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 764, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123124

RESUMO

BACKGROUND: Leaf nitrogen (N) and phosphorus (P) resorption is a fundamental adaptation strategy for plant nutrient conservation. However, the relative roles that environmental factors and plant functional traits play in regulating N and P resorption remain largely unclear, and little is known about the underlying mechanism of plant functional traits affecting nutrient resorption. Here, we measured leaf N and P resorption and 13 plant functional traits of leaf, petiole, and twig for 101 representative broad-leaved tree species in our target subtropical transitional forests. We integrated these multiple functional traits into the plant economics spectrum (PES). We further explored whether and how elevation-related environmental factors and these functional traits collectively control leaf N and P resorption. RESULTS: We found that deciduous and evergreen trees exhibited highly diversified PES strategies, tending to be acquisitive and conservative, respectively. The effects of PES, rather than of environmental factors, dominated leaf N and P resorption patterns along the elevational gradient. Specifically, the photosynthesis and nutrient recourse utilization axis positively affected N and P resorption for both deciduous and evergreen trees, whereas the structural and functional investment axis positively affected leaf N and P resorption for evergreen species only. Specific leaf area and green leaf nutrient concentrations were the most influential traits driving leaf N and P resorption. CONCLUSIONS: Our study simultaneously elucidated the relative contributions of environmental factors and plant functional traits to leaf N and P resorption by including more representative tree species than previous studies, expanding our understanding beyond the relatively well-studied tropical and temperate forests. We highlight that prioritizing the fundamental role of traits related to leaf resource capture and defense contributes to the monitoring and modeling of leaf nutrient resorption. Therefore, we need to integrate PES effects on leaf nutrient resorption into the current nutrient cycling model framework to better advance our general understanding of the consequences of shifting tree species composition for nutrient cycles across diverse forests.


Assuntos
Florestas , Nitrogênio , Fósforo , Folhas de Planta , Árvores , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Árvores/metabolismo , Árvores/fisiologia , Clima Tropical , China , Fotossíntese
2.
Ecol Evol ; 8(23): 11372-11384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598742

RESUMO

The flood-dry-flood cycle in the reservoir riparian zone (RRZ) of the Three Gorges Dam has dramatically altered the riparian ecosystem structure and composition. Previous field studies have shown that leaf traits varied greatly and were restricted to the lower-investment and faster-return end of the global leaf spectrum, which are typical characteristics of fast-growing species. However, it is unclear as to the mechanism underpinning the growth potential of these species and how it will respond to soil nutrient availability and temperature. Here, we linked the plant functional traits of four representative dominant C4 herbaceous species (Setaria viridis, Echinochloa crusgalli, Cynodon dactylon and Hemarthria altissima) to their relative growth rates (RGR) under ambient and elevated temperatures, with different nitrogen and phosphorus levels, to explore the potential mechanism of species growth in the newly established reservoir riparian ecosystem in the Three Gorges Reservoir Area, China. We grew seedlings of these species in four open-top chambers, with three levels of nutrient supplies under two temperature gradients (ambient temperature and an elevated temperature of 4°C). We found that the responses of the RGR and plant traits to soil N and P supply levels and temperature varied considerably among studied species. E. crusgalli displayed the lowest RGR associated with relatively low specific leaf area (SLA), leaf nitrogen content (LN), stem mass ratio (SMR), and high leaf mass ratio (LMR) and was less affected by soil N and P supply levels and temperature. C. dactylon and H. altissima showed the highest RGR compared to the other two species grown at the substrate of N = 0.4 mg/g, P = 0.2 mg/g at ambient air temperature, associated with a relatively high SMR, low LMR and low plant carbon content (PCC). However, the RGR advantage of the two species was diminished at elevated temperatures, while S. viridis showed the highest RGR compared to the other species. Across all datasets, the RGR had no association with the leaf area ratio (LAR) and SLA. The RGR also showed no significant relationships with the LN and leaf phosphorus content (LP). On the other hand, the RGR was captured adequately by the SMR, which can therefore be considered as a powerful functional marker of species' functioning in this newly established reservoir riparian ecosystem. Our study provides some insight into the underlying mechanisms of species growth in reservoir riparian ecosystems.

3.
Ecol Evol ; 7(11): 3636-3644, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28616161

RESUMO

Understanding climatic influences on the proportion of evergreen versus deciduous broad-leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad-leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad-leaved tree species in subtropical China. The Relative Importance Value index (RIV) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25-29.1°N, and 15% per degree at 29.1-34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between -4.5 and 2.5°C and 2% per °C at 2.5-10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad-leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP > MAT. We further proposed that the latitudinal limit of evergreen and deciduous broad-leaved mixed forests was 29.1-32°N, corresponding with MAT of 11-18.1°C, MinT of -2.5 to 2.51°C, and MAP of 1,000-1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad-leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad-leaved tree species' distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.

4.
Ecol Evol ; 5(7): 1484-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25897387

RESUMO

Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

5.
Ecol Evol ; 5(22): 5149-5161, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151120

RESUMO

Successful growth of a tree is the result of combined effects of biotic and abiotic factors. It is important to understand how biotic and abiotic factors affect changes in forest structure and dynamics under environmental fluctuations. In this study, we explored the effects of initial size [diameter at breast height (DBH)], neighborhood competition, and site condition on tree growth, based on a 3-year monitoring of tree growth rate in a permanent plot (120 × 80 m) of montane Fagus engleriana-Cyclobalanopsis multiervis mixed forest on Mt. Shennongjia, China. We measured DBH increments every 6 months from October 2011 to October 2014 by field-made dendrometers and calculated the mean annual growth rate over the 3 years for each individual tree. We also measured and calculated twelve soil properties and five topographic variables for 384 grids of 5 × 5 m. We defined two distance-dependent neighborhood competition indices with and without considerations of phylogenetic relatedness between trees and tested for significant differences in growth rates among functional groups. On average, trees in this mixed montane forest grew 0.07 cm year-1 in DBH. Deciduous, canopy, and early-successional species grew faster than evergreen, small-statured, and late-successional species, respectively. Growth rates increased with initial DBH, but were not significantly related to neighborhood competition and site condition for overall trees. Phylogenetic relatedness between trees did not influence the neighborhood competition. Different factors were found to influence tree growth rates of different functional groups: Initial DBH was the dominant factor for all tree groups; neighborhood competition within 5 m radius decreased growth rates of evergreen trees; and site condition tended to be more related to growth rates of fast-growing trees (deciduous, canopy, pioneer, and early-successional species) than the slow-growing trees (evergreen, understory, and late-successional species).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA