Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33517370

RESUMO

Aging is the largest risk factor of major human diseases. Long noncoding RNAs (lncRNAs) as the key regulatory elements have shown a strong impact on multiple biological processes as well as human disease mechanisms. However, the roles of lncRNAs in aging/healthy aging processes remain largely unknown. Centenarians are good models for healthy aging studies due to avoiding major chronic diseases and disabilities. To illustrate their ubiquitous nature in the genome and the 'secrets' of healthy aging regulation from the perspective of lncRNAs, peripheral blood samples from two regions consisting 76 centenarians (CENs), 54 centenarian-children (F1) and 41 spouses of centenarian-children (F1SP) were collected for deep RNA-seq. We identified 11 CEN-specific lncRNAs that is particularly expressed in longevous individuals. By kmers clustering, hundreds of human lncRNAs show similarities with CEN-specific lncRNAs, especially with ENST00000521663 and ENST00000444998. Using F1SP as normal elder controls (age: 59.9 ± 6.6 years), eight lncRNAs that are differentially expressed in longevous elders (CEN group, age: 102.2 ± 2.4 years) were identified as candidate aging/health aging-related lncRNAs (car-lncs). We found that the expression of eight car-lncs in human diploid fibroblasts displayed dynamic changes during cell passage and/or H2O2/rapamycin treatment; of which, overexpression either of THBS1-IT1 and THBS1-AS1, two lncRNAs that highly expressed in CENs, can remarkably decrease p16, p21 and the activity of senescent related ß-galactosidase, suggesting that THBS1-IT1 and THBS1-AS1 can inhibit cellular senescence. We provided the first comprehensive analysis of lncRNA expression in longevous populations, and our results hinted that dysregulated lncRNAs in CENs are potential protective factors in healthy aging process.


Assuntos
Envelhecimento/metabolismo , Senescência Celular , Regulação da Expressão Gênica , RNA Longo não Codificante/biossíntese , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
2.
Aging Cell ; 23(1): e13916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37400997

RESUMO

Somatic mutations accumulate with age and are associated closely with human health, their characterization in longevity cohorts remains largely unknown. Here, by analyzing whole genome somatic mutation profiles in 73 centenarians and 51 younger controls in China, we found that centenarian genomes are characterized by a markedly skewed distribution of somatic mutations, with many genomic regions being specifically conserved but displaying a high function potential. This, together with the observed more efficient DNA repair ability in the long-lived individuals, supports the existence of key genomic regions for human survival during aging, with their integrity being of essential to human longevity.


Assuntos
Centenários , Longevidade , Idoso de 80 Anos ou mais , Humanos , Longevidade/genética , Envelhecimento/genética , Mutação/genética , Genômica
3.
J Gerontol A Biol Sci Med Sci ; 78(12): 2251-2259, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738989

RESUMO

Aging of the organism is associated diminished response to external stimuli including weakened immune function, resulting in diseases that impair health and lifespan. Several dietary restriction modalities have been reported to improve health and lifespan in different animal models, but it is unknown whether any of the lifespan-extending dietary treatments could be combined to achieve an additive effect. Here, we investigated the effects of halving amino acids components in the HUNTaa diet, a synthetic medium known to extend lifespan in Drosophila. We found that dietary restriction by halving the entire amino acid components (DR group) could further extend lifespan and improve resistance to oxidative stress, desiccation stress, and starvation than flies on HUNTaa diet alone (wt group). Transcriptome analysis of Drosophila at 40, 60, and 80 days of age revealed that genes related to cell proliferation and metabolism decreased with age in the wt group, whereas background stimulus response and amino acid metabolism increased with age. However, these trends differed in the DR group, that is, the DR flies had downregulated stress response genes, including reduced background immune activation. Infection experiments demonstrated that these flies survived longer after feeding infection with Serratia marcescens and Enterococcus faecalis, suggesting that these flies had stronger immune function, and therefore reduced immune senescence. These results demonstrated that halving the entire amino acid components in the HUNTaa diet further extended health and lifespan and suggested that lifespan-extending diet and dietary restriction treatment could be combined to achieve additive beneficial results.


Assuntos
Drosophila melanogaster , Longevidade , Animais , Longevidade/fisiologia , Drosophila melanogaster/genética , Dieta com Restrição de Proteínas , Drosophila , Aminoácidos , Restrição Calórica
4.
Aging Dis ; 14(4): 1374-1389, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163432

RESUMO

Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.

5.
Genes (Basel) ; 13(5)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35627134

RESUMO

Deep RNA sequencing of 164 blood samples collected from long-lived families was performed to investigate the expression patterns of circular RNAs (circRNAs). Unlike that observed in previous studies, circRNA expression in long-lived elderly individuals (98.3 ± 3.4 year) did not exhibit an age-accumulating pattern. Based on weighted circRNA co-expression network analysis, we found that longevous elders specifically gained eight but lost seven conserved circRNA-circRNA co-expression modules (c-CCMs) compared with normal elder controls (spouses of offspring of long-lived individuals, age = 59.3 ± 5.8 year). Further analysis showed that these modules were associated with healthy aging-related pathways. These results together suggest an important role of circRNAs in regulating human lifespan extension.


Assuntos
MicroRNAs , RNA Circular , Idoso , Sequência de Bases , Humanos , Longevidade/genética , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Circular/genética , Análise de Sequência de RNA
6.
Aging (Albany NY) ; 14(1): 354-367, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995210

RESUMO

Telomere is a unique DNA-protein complex which covers the ends of chromosomes to avoid end fusion and maintain the stability and integrity of chromosomes. Telomere length (TL) shortening has been linked to aging and various age-related diseases in humans. Here we recruited a total of 1031 Chinese individuals aged between 12 and 111 years, including 108 families with parents and their offspring. DNA was extracted from peripheral white blood cells and TL was measured by quantitative PCR (qPCR). We explored the associations of TL with age, gender and clinical variables, and tested the parental effects on TL variation. First, we found that TL was shortened with age, however, TL was better maintained in females than males. Second, there was a robust association of TL between mother and offspring, but not between father and their offspring. In addition, TL was inversely associated with visceral fat index in females, and positively associated with apolipoprotein A levels. Knockdown of the key genes for lipid metabolism (PNPLA2 and CPT1) shortened the TL in HepG2 cells. These findings indicate that TL is maternally inherited, and impairment of lipid metabolism may contribute to the TL shortening in the Chinese population.


Assuntos
Povo Asiático/genética , Metabolismo dos Lipídeos/genética , Telômero/genética , Telômero/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Comput Struct Biotechnol J ; 20: 4131-4137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016715

RESUMO

Cellular senescence is a dynamic process driven by epigenetic and genetic changes. Although some transcriptomic signatures of senescent cells have been discovered, how these senescence-related signals change over time remains largely unclear. Here, we profiled the transcriptome dynamics of human dermal fibroblast (HDF) cells in successive stages of growth from proliferation to senescence. Based on time-series expression profile analysis, we discovered four trajectories (C1, C2, C3, C4) that are dynamically expressed as senescence progresses. While some genes were continuously up-regulated (C4) or down-regulated (C2) with aging, other genes did not change linearly with cell proliferation, but remained stable until entering the senescent state (C1, C3). Further analysis revealed that the four modes were enriched in different biological pathways, including regulation of cellular senescence. These findings provide a new perspective on understanding the dynamic regulatory mechanism of cellular senescence.

8.
J Endocrinol ; 254(3): 137-151, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608066

RESUMO

Receptor for activated C kinase 1 (RACK1) is a versatile protein involved in multiple biological processes. In a previous study by Zhao et al., hepatic RACK1 deletion in mice led to an inhibition of autophagy, blocked autophagy-dependent lipolysis, and caused steatosis. Using the same mouse model (RACK1hep-/-), we revealed new roles of RACK1 in maintaining bile acid homeostasis and hepatic glucose uptake, which further affected circulatory lipid and glucose levels. To be specific, even under hepatic steatosis, the plasma lipids were generally reduced in RACK1hep-/- mouse, which was due to the suppression of intestinal lipid absorption. Accordingly, a decrease in total bile acid level was found in RACK1hep-/- livers, gallbladders, and small intestine tissues, and specific decrease of 12-hydroxylated bile acids was detected by liquid chromatography-mass spectrometry. Consistently, reduced expression of CYP8B1 was found. A decrease in hepatic glycogen storage was also observed, which might be due to the inhibited glucose uptake by GLUT2 insufficiency. Interestingly, RACK1-KO-inducing hepatic steatosis did not raise insulin resistance (IR) nor IR-inducing factors like endoplasmic reticulum stress and inflammation. In summary, this study uncovers that hepatic RACK1 might be required in maintaining bile acid homeostasis and glucose uptake in hepatocytes. This study also provides an additional case of hepatic steatosis disassociation with insulin resistance.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Ácidos e Sais Biliares , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Homeostase , Resistência à Insulina/genética , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo
9.
Sci Adv ; 8(17): eabf2017, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35476452

RESUMO

Adaptation to reduced energy production during aging is a fundamental issue for maintaining healthspan or prolonging life span. Currently, however, the underlying mechanism in long-lived people remains poorly understood. Here, we analyzed transcriptomes of 185 long-lived individuals (LLIs) and 86 spouses of their children from two independent Chinese longevity cohorts and found that the ribosome pathway was significantly down-regulated in LLIs. We found that the down-regulation is likely controlled by ETS1 (ETS proto-oncogene 1), a transcription factor down-regulated in LLIs and positively coexpressed with most ribosomal protein genes (RPGs). Functional assays showed that ETS1 can bind to RPG promoters, while ETS1 knockdown reduces RPG expression and alleviates cellular senescence in human dermal fibroblast (HDF) and embryonic lung fibroblast (IMR-90) cells. As protein synthesis/turnover in ribosomes is an energy-intensive cellular process, the decline in ribosomal biogenesis governed by ETS1 in certain female LLIs may serve as an alternative mechanism to achieve energy-saving and healthy aging.


Assuntos
Envelhecimento Saudável , Criança , Feminino , Humanos , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Fatores de Transcrição/metabolismo
10.
Mech Ageing Dev ; 195: 111468, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33741395

RESUMO

Senescent cells (SCs) accumulate with age and cause various age-related diseases. Clearance of SCs by transgenic or pharmaceutical strategies has been demonstrated to delay aging, treat age-related diseases and extend healthspan. SCs are resistant to various stressors because they are protected from apoptosis by SC anti-apoptotic pathways (SCAPs). Targeting the proteins in the SCAPs with small molecules can selectively kill SCs, the effector proteins are called senolytic targets and the small molecules are called senolytics. Until now, a series of senolytic targets, such as BCL-XL, heat shock protein 90 (HSP90), Na+/K+ ATPase, bromodomain containing 4 (BRD4), and oxidation resistance 1 (OXR1) have been identified. However, current senolytics targeting these proteins still have some limitations in killing SCs in terms of safety, specificity and broad-spectrum activity. To overcome the challenges, some new strategies, such as proteolysis-targeting chimera (PROTAC) technology, chimeric antigen receptor (CAR) T cells, and ß-galactosidase-modified prodrugs, were developed to clear SCs and shown to have promising therapeutic potential. Here we review the significance of SCs in aging and age-related diseases, summarize the known senolytic targets and highlight the emerging new strategies for clearing SCs.


Assuntos
Envelhecimento/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Senescência Celular , Terapia de Alvo Molecular , Proteólise/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , Imunoterapia Adotiva/métodos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências
11.
Front Immunol ; 12: 756825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721432

RESUMO

Objective: Systemic lupus erythematosus (SLE) is an autoimmune disease with complex etiology that is not yet entirely understood. We aimed to elucidate the mechanisms and therapeutic potential of microRNAs (miRNAs) in SLE in a Tibetan population. Methods: Peripheral blood mononuclear cells from SLE patients (n = 5) and healthy controls (n = 5) were used for miRNA-mRNA co-sequencing to detect miRNAs related to immune abnormalities associated with SLE. Luciferase reporter assay was used to identify potential targets of candidate miRNA. The target genes were verified in miRNA-agomir/antagomir transfection assays with multiple cells lines and by expression analysis. The effects of candidate miRNA on monocyte and macrophage activation were evaluated by multiple cytokine profiling. Neutrophil extracellular traps (NETs) formation was analyzed in vitro by cell stimulation with supernatants of monocytes and macrophages transfected with candidate miRNA. The rodent MRL/lpr lupus model was used to evaluate the therapeutic effect of CXCL2Ab on SLE and the regulation effect of immune disorders. Results: Integrated miRNA and mRNA expression profiling identified miRNA-4512 as a candidate miRNA involved in the regulation of neutrophil activation and chemokine-related pathways. MiR-4512 expression was significantly reduced in monocytes and macrophages from SLE patients. MiR-4512 suppressed the TLR4 pathway by targeting TLR4 and CXCL2. Decreased monocyte and macrophage miR-4512 levels led to the expression of multiple proinflammatory cytokines in vitro. Supernatants of miR-4512 antagomir-transfected monocytes and macrophages significantly promoted NETs formation (P < 0.05). Blocking of CXCL2 alleviated various pathogenic manifestations in MRL/lpr mice, including kidney damage and expression of immunological markers of SLE. Conclusions: We here demonstrated the role of miR-4512 in innate immunity regulation in SLE. The effect of miR-4512 involves the regulation of monocytes, macrophages, and NETs formation by direct targeting of TLR4 and CXCL2, indicating the miR-4512-TLR4-CXCL2 axis as a potential novel therapeutic target in SLE.


Assuntos
Armadilhas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Macrófagos/imunologia , MicroRNAs/imunologia , Monócitos/imunologia , Animais , Quimiocina CXCL2/imunologia , Quimiocina CXCL2/metabolismo , Armadilhas Extracelulares/genética , Humanos , Imunidade Inata/imunologia , Lúpus Eritematoso Sistêmico/genética , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Tibet , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
12.
PeerJ ; 8: e8421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095326

RESUMO

Colon adenocarcinoma (COAD) represents a major public health issue due to its high incidence and mortality. As different histological subtypes of COAD are related to various survival outcomes and different therapies, finding specific targets and treatments for different subtypes is one of the major demands of individual disease therapy. Interestingly, as these different subtypes show distinct metabolic profiles, it may be possible to find specific targets related to histological typing by targeting COAD metabolism. In this study, the differential expression patterns of metabolism-related genes between COAD (n = 289) and adjacent normal tissue (n = 41) were analyzed by one-way ANOVA. We then used weighted gene co-expression network analysis (WGCNA) to further identify metabolism-related gene connections. To determine the critical genes related to COAD metabolism, we obtained 2,114 significantly differentially expressed genes (DEGs) and 12 modules. Among them, we found the hub module to be significantly associated with histological typing, including non-mucin-producing colon adenocarcinoma and mucin-producing colon adenocarcinoma. Combining survival analysis, we identified glycerophosphodiester phosphodiesterase 1 (GDE1) as the most significant gene associated with histological typing and prognosis. This gene displayed significantly lower expression in COAD compared with normal tissues and was significantly correlated with the prognosis of non-mucin-producing colon adenocarcinoma (p = 0.0017). Taken together, our study showed that GDE1 exhibits considerable potential as a novel therapeutic target for non-mucin-producing colon adenocarcinoma.

14.
Sci Rep ; 6: 21962, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911903

RESUMO

Centenarians are a good healthy aging model. Interestingly, centenarians' offspring are prone to achieve longevity. Here we recruited 60 longevity families and investigated the blood biochemical indexes of family members to seek candidate factors associated with familial longevity. First, associations of blood indexes with age were tested. Second, associations of blood parameters in centenarians (CEN) with their first generation of offspring (F1) and F1 spouses (F1SP) were analyzed. Third, genes involved in regulating target factors were investigated. We found that total cholesterol (TC) and triglyceride (TG) increased with age (20-80 years), but decreased in CEN. Similarly, blood urea nitrogen (BUN) and blood creatinine (BCr) increased with age (20-80 years), but were maintained on a plateau in CEN. Importantly, we first revealed dual changes in blood pressure, i.e., decreased diastolic blood pressure but increased systolic blood pressure in CEN, which associated with altered CST3 expression. Genetic analysis revealed a significant association of blood uric acid (BUA) and BCr in CEN with F1 but not with F1SP, suggesting they may be heritable traits. Taken together, our results suggest serum lipids, kidney function and especially diastolic pressure rather than systolic pressure were improved in CEN or their offspring, suggesting these factors may play an important role in familial longevity.


Assuntos
Pressão Sanguínea/fisiologia , Rim/metabolismo , Lipídeos/sangue , Longevidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Povo Asiático , Nitrogênio da Ureia Sanguínea , China , Colesterol/sangue , Creatinina/sangue , Cistatina C/metabolismo , Humanos , Testes de Função Renal , Metabolismo dos Lipídeos/genética , Masculino , Pessoa de Meia-Idade , Transcriptoma , Triglicerídeos/sangue , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA