RESUMO
High-altitude pulmonary edema (HAPE) is a fatal threat for sojourners who ascend rapidly without sufficient acclimatization. Acclimatized sojourners and adapted natives are both insensitive to HAPE but have different physiological traits and molecular bases. In this study, based on GSE52209, the gene expression profiles of HAPE patients were compared with those of acclimatized sojourners and adapted natives, with the common and divergent differentially expressed genes (DEGs) and their hub genes identified, respectively. Bioinformatic methodologies for functional enrichment analysis, immune infiltration, diagnostic model construction, competing endogenous RNA (ceRNA) analysis and drug prediction were performed to detect potential biological functions and molecular mechanisms. Next, an array of in vivo experiments in a HAPE rat model and in vitro experiments in HUVECs were conducted to verify the results of the bioinformatic analysis. The enriched pathways of DEGs and immune landscapes for HAPE were significantly different between sojourners and natives, and the common DEGs were enriched mainly in the pathways of development and immunity. Nomograms revealed that the upregulation of TNF-α and downregulation of RPLP0 exhibited high diagnostic efficiency for HAPE in both sojourners and natives, which was further validated in the HAPE rat model. The addition of TNF-α and RPLP0 knockdown activated apoptosis signaling in endothelial cells (ECs) and enhanced endothelial permeability. In conclusion, TNF-α and RPLP0 are shared biomarkers and molecular bases for HAPE susceptibility during the acclimatization/adaptation/maladaptation processes in sojourners and natives, inspiring new ideas for predicting and treating HAPE.
Assuntos
Doença da Altitude , Apoptose , Células Endoteliais , Proteínas Ribossômicas , Fator de Necrose Tumoral alfa , Animais , Humanos , Masculino , Ratos , Altitude , Doença da Altitude/genética , Doença da Altitude/metabolismo , Doença da Altitude/patologia , Apoptose/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismoRESUMO
BACKGROUND: Nanoplastics (NPs) could be released into environment through the degradation of plastic products, and their content in the air cannot be ignored. To date, no studies have focused on the cardiac injury effects and underlying mechanisms induced by respiratory exposure to NPs. RESULTS: Here, we systematically investigated the cardiotoxicity of 40 nm polystyrene nanoplastics (PS-NPs) in mice exposed via inhalation. Four exposure concentrations (0 µg/day, 16 µg/day, 40 µg/day and 100 µg/day) and three exposure durations (1 week, 4 weeks, 12 weeks) were set for more comprehensive information and RNA-seq was performed to reveal the potential mechanisms of cardiotoxicity after acute, subacute and subchronic exposure. PS-NPs induced cardiac injury in a dose-dependent and time-dependent manner. Acute, subacute and subchronic exposure increased the levels of injury biomarkers and inflammation and disturbed the equilibrium between oxidase and antioxidase activity. Subacute and subchronic exposure dampened the cardiac systolic function and contributed to structural and ultrastructural damage in heart. Mechanistically, violent inflammatory and immune responses were evoked after acute exposure. Moreover, disturbed energy metabolism, especially the TCA cycle, in the myocardium caused by mitochondria damage may be the latent mechanism of PS-NPs-induced cardiac injury after subacute and subchronic exposure. CONCLUSION: The present study evaluated the cardiotoxicity induced by respiratory exposure to PS-NPs from multiple dimensions, including the accumulation of PS-NPs, cardiac functional assessment, histology observation, biomarkers detection and transcriptomic study. PS-NPs resulted in cardiac injury structurally and functionally in a dose-dependent and time-dependent manner, and mitochondria damage of myocardium induced by PS-NPs may be the potential mechanism for its cardiotoxicity.
Assuntos
Cardiotoxicidade , Nanopartículas , Animais , Camundongos , Poliestirenos/toxicidade , Microplásticos , Miocárdio , BiomarcadoresRESUMO
Cardiovascular aging has been reported to accelerate in spaceflights, which is a great potential risk to astronauts' health and performance. However, current exercise routines are not sufficient to reverse the adverse effects of microgravity exposure. Recently, salidroside (SAL), a valuable medicinal herb, has been demonstrated to display an important role for prevention and treatment in cardiovascular and other diseases. In the present work, Sprague-Dawley rats with four-week tail-suspension hindlimb-unloading were used to simulate microgravity effects on the cardiovascular system. We found that intragastrical administration of SAL not only significantly decreased the expressions of senescence biomarkers, such as P65 and P16, but also obviously increased the expressions of BK-dependent apoptotic genes, including the large-conductance calcium-activated K+ channel (BK), Bax, Bcl-2, and cleaved caspase-3, in vascular smooth muscle cells (VSMCs) in vivo and in vitro. In addition, relative non-coding RNAs were screened, and a luciferase assay identified that SAL increased apoptosis by activating LncRNA-FLORPAR, inhibiting miR-193, and then triggering the activity of the BK-α subunit. Our work indicated that SAL is a novel non-coding RNA modulator for regulating the LncRNA-FLORPAR sponging miR-193 pathway, which significantly promoted BK-dependent apoptosis and delayed cerebrovascular aging-like remodeling during simulated microgravity exposure. Our findings may provide a new approach to prevent cardiovascular aging in future spaceflights.
Assuntos
MicroRNAs , RNA Longo não Codificante , Ausência de Peso , Ratos , Animais , Ratos Sprague-Dawley , RNA Longo não Codificante/metabolismo , Apoptose , MicroRNAs/metabolismo , Senescência Celular/genética , Miócitos de Músculo Liso/metabolismoRESUMO
As one of the most common forms of RNA modification, N6-methyladenosine (m6A) RNA modification has attracted increasing research interest in recent years. This reversible RNA modification added a new dimension to the post-transcriptional regulation of gene expression. In colorectal cancer (CRC), the role of m6A modification has been extensively studied, not only on mRNAs but also on non-coding RNAs (ncRNAs). In the present review, we depicted the role of m6A modification in CRC, systematically elaborate the interaction between m6A modification and regulatory ncRNAs in function and mechanism. Moreover, we discussed the potential applications in clinical.
Assuntos
Adenosina/análogos & derivados , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , RNA não Traduzido/genética , Adenosina/metabolismo , Animais , Biomarcadores Tumorais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metilação , MicroRNAs/genética , Terapia de Alvo Molecular , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismoRESUMO
PURPOSE: This study aims to explore the incidence of hypoglycemia in patients with type 2 diabetes mellitus (T2DM) and the influence of hypoglycemia on the specific quality of life in T2DM patients. METHODS: It was a comparative cross-sectional study consisting of 519 T2DM patients in Xi'an, China and patients were investigated by self-reported hypoglycemia and specific quality of life questionnaires from September 2019 to January 2020. Descriptive analysis, t-test, Chi-square test, hierarchical regression analysis and stepwise multiple regression analysis were applied to assess the influence of hypoglycemia on the specific quality of life. RESULTS: The incidence of hypoglycemia in T2DM patients was 32.18%. The mean score of specific quality of life in diabetes without hypoglycemia was 57.33 ± 15.36 and was 61.56 ± 17.50 in those with hypoglycemia, which indicated that hypoglycemia had a serious impact on the quality of life of diabetics (t = - 5.172, p = 0.000). In the Univariate analysis of specific quality of life, age, education background, marital status, living status, duration of diabetes, monthly income per capita were independent and significant factors associated with specific quality of life of two groups of T2DM patients (p < 0.05). In the hierarchical regression analysis, the duration of the diabetes more than 11 years and the frequency of hypoglycemia more than 6 times in half a year entered the equation of specific quality of life of 519 diabetics respectively (p < 0.001). In multiple linear regression analysis, age, marital status and income all entered the regression equation of quality of life of the two groups (p < 0.05). CONCLUSION: Hypoglycemia will have a serious impact on the quality of life of T2DM patients. In order to improve the living quality in diabetics, effective measurements should be taken to strengthen the management of blood glucose and to avoid hypoglycemia.
Assuntos
Glicemia/análise , Comorbidade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Hipoglicemia/complicações , Hipoglicemia/fisiopatologia , Autorrelato/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Estudos Transversais , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Hipoglicemia/epidemiologia , Incidência , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Análise de Regressão , Inquéritos e Questionários , Adulto JovemRESUMO
The functional and structural adaptations in cerebral arteries could be one of the fundamental causes in the occurrence of orthostatic intolerance after space flight. In addition, emerging studies have found that many cardiovascular functions exhibit circadian rhythm. Several lines of evidence suggest that space flight might increase an astronaut's cardiovascular risks by disrupting circadian rhythm. However, it remains unknown whether microgravity disrupts the diurnal variation in vascular contractility and whether microgravity impacts on circadian clock system. Sprague-Dawley rats were subjected to 28-day hindlimb-unweighting to simulate the effects of microgravity on vasculature. Cerebrovascular contractility was estimated by investigating vasoconstrictor responsiveness and myogenic tone. The circadian regulation of CaV1.2 channel was determined by recording whole-cell currents, evaluating protein and mRNA expressions. Then the candidate miRNA in relation with Ca2+ signal was screened. Lastly, the underlying pathway involved in circadian regulation of cerebrovascular contractility was determined. The major findings of this study are: (1) The clock gene BMAL1 could induce the expression of miR-103, and in turn modulate the circadian regulation of CaV1.2 channel in rat cerebral arteries at post-transcriptional level; and (2) simulated microgravity disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility by altering circadian regulation of BMAL1/miR-103/CaV1.2 signal pathway.
Assuntos
Fatores de Transcrição ARNTL/genética , Canais de Cálcio Tipo L/metabolismo , Circulação Cerebrovascular/genética , Ritmo Circadiano , MicroRNAs/genética , Vasoconstrição/genética , Ausência de Peso , Fatores de Transcrição ARNTL/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Masculino , Modelos Biológicos , Ratos , Transdução de SinaisRESUMO
Nanoplastics are widely distributed in indoor and outdoor air and can be easily inhaled into human lungs. However, limited studies have investigated the impact of nanoplastics on inhalation toxicities, especially on the initiation and progression of chronic obstructive pulmonary disease (COPD). To fill the gap, the present study used oronasal aspiration to develop mice models. Mice were exposed to polystyrene nanoplastics (PS-NPs) at three concentrations, as well as the corresponding controls, for acute, subacute, and subchronic exposure. As a result, PS-NPs could accumulate in exposed mice lungs and influence lung organ coefficient. Besides, PS-NPs induced local and systemic oxidative stress, inflammation, and protease-antiprotease imbalance, resulting in decreased respiratory function and COPD-like lesions. Meanwhile, PS-NPs could trigger the subcellular mechanism to promote COPD development by causing mitochondrial dysfunctions and endoplasmic reticulum (ER) stress. Mechanistically, ferroptosis played an important role in the COPD-like lung injury induced by PS-NPs. In summary, the present study comprehensively and systematically indicates that PS-NPs can damage human respiratory health and increase the risk for COPD.
Assuntos
Lesão Pulmonar , Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Exposição por Inalação/efeitos adversos , Microplásticos , Poliestirenos/toxicidade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamenteRESUMO
Exposure to micro- and nanoplastics (MNPs) has been implicated in potential cardiotoxicity. However, in vitro models based on cardiomyocyte cell lines lack crucial cardiac characteristics, while interspecies differences in animal models compromise the reliability of the conclusions. In addition, current research has predominantly focused on single-time point exposures to MNPs, neglecting comparative analyses of cardiac injury across early and late stages. Moreover, there remains a large gap in understanding the susceptibility to MNPs under pathological conditions. To address these limitations, this study integrated cardiac organoids (COs) and organ-on-a-chip (OoC) technology to develop the cardiac organoid-on-a-chip (COoC), which was validated for cardiotoxicity evaluation through multiple dimensions. Based on COoC, we conducted a dynamic observation of the cardiac damage caused by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Oxidative stress, inflammation, disruption of calcium ion homeostasis, and mitochondrial dysfunction were confirmed as the potential mechanisms of PS-NP-induced cardiotoxicity and the crucial events in the early stages, while cardiac fibrosis emerged as a prominent feature in late stages. Notably, low-dose exposure exacerbated myocardial infarction symptoms under pathological states, despite no significant cardiotoxicity shown in healthy models. In conclusion, these findings further deepened our understanding of PS-NP-induced cardiotoxic effects and introduced a promising in vitro platform for assessing cardiotoxicity.
RESUMO
Substituted p-phenylenediamines (PPDs), a class of antioxidants, have been widely used to extend the lifespan of rubber products, such as tires and pipes. During use, PPDs will generate their quinone derivatives (PPD-Qs). In recent years, PPDs and PPD-Qs have been detected in the global environment. Among them, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q), the oxidation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), has been identified as highly toxic to coho salmon, with the lethal concentration of 50 % (LC50) being 95 ng/L, highlighting it as an emerging pollutant of great concern. This review summarizes the physicochemical properties, global environmental distribution, bioaccessibility, potential toxicity, human exposure risk, and green measures of PPDs and PPD-Qs. These chemicals exhibit lipophilicity, bioaccumulation potential, and poor aqueous stability. They have been found in water, air, dust, soil, and sediment worldwide, indicating their significance as emerging pollutants. Notably, current studies have identified electronic waste (e-waste), such as discarded wires and cables, as a non-negligible source of PPDs and PPD-Qs, in addition to tire wear. PPDs and PPD-Qs exhibit strong bioaccumulation in aquatic organisms and mammals, with a tendency for biomagnification within the food web, posing health threats to humans. Available toxicity data indicate that PPDs and PPD-Qs have negative effects on aquatic organisms, mammals, and invertebrates. Acute exposure leads to death and acute damage, and long-term exposure can cause a series of adverse effects, including growth and development toxicity, reproductive toxicity, neurotoxicity, intestinal toxicity, and multi-organ damage. This paper discusses current research gaps and offers recommendations to understand better the occurrence, behavior, toxicity, and environmental exposure risks of PPDs and PPD-Qs.
Assuntos
Antioxidantes , Poluentes Ambientais , Fenilenodiaminas , Fenilenodiaminas/toxicidade , Humanos , Poluentes Ambientais/toxicidade , Quinonas/toxicidade , Exposição Ambiental , Monitoramento AmbientalRESUMO
An increasing number of harmful environmental factors are causing serious impacts on human health, and there is an urgent need to accurately identify the toxic effects and mechanisms of these harmful environmental factors. However, traditional toxicity test methods (e.g., animal models and cell lines) often fail to provide accurate results. Fortunately, organoids differentiated from stem cells can more accurately, sensitively and specifically reflect the effects of harmful environmental factors on the human body. They are also suitable for specific studies and are frequently used in environmental toxicology nowadays. As a combination of organoids and organ-on-a-chip technology, organoids-on-a-chip has great potential in environmental toxicology. It is more controllable to the physicochemical microenvironment and is not easy to be contaminated. It has higher homogeneity in the size and shape of organoids. In addition, it can achieve vascularization and exchange the nutrients and metabolic wastes in time. Multi-organoids-chip can also simulate the interactions of different organs. These advantages can facilitate better function and maturity of organoids, which can also make up for the shortcomings of common organoids to a certain extent. This review firstly discussed the limitations of traditional toxicology testing platforms, leading to the introduction of new platforms: organoids and organoids-on-a-chip. Next, the applications of different organoids and organoids-on-a-chip in environmental toxicology were summarized and prospected. Since the advantages of the new platforms have not been sufficiently considered in previous literature, we particularly emphasized them. Finally, this review also summarized the opportunities and challenges faced by organoids and organoids-on-a-chip, with the expectation that readers will gain a deeper understanding of their value in the field of environmental toxicology.
Assuntos
Ecotoxicologia , Sistemas Microfisiológicos , Animais , Humanos , Dispositivos Lab-On-A-Chip , Organoides , Testes de ToxicidadeRESUMO
The emerging contaminant nanoplastics (NPs) have received considerable attention. Due to their tiny size and unique colloidal properties, NPs could more easily enter the body and cross biological barriers with inhalation exposure. While NPs-induced hepatotoxicity has been reported, the hepatic impact of inhaled NPs was still unknown. To close this gap, a 40 nm polystyrene NPs (PS-NPs) inhalation exposure mice model was developed to explore the hepatotoxicity during acute (1 week), subacute (4 weeks), and subchronic period (12 weeks), with four exposure doses (0, 16, 40, and 100 µg/day). Results showed that inhaled PS-NPs caused a remarkable increase of ALT, AST, and ALP with a decrease of CHE, indicating liver dysfunction. Various histological abnormalities and significantly higher levels of inflammation in a dose- and time-dependent manner were observed. Moreover, after 4 weeks and 12 weeks of exposure, Masson staining and upregulated expression of TGF-ß, α-SMA, and Col1a1 identified that inhaled PS-NPs exposure triggered the progression of liver fibrosis with the exposure time prolonged. From the mechanistic perspective, transcriptome analysis revealed that ferroptosis was involved in PS-NPs-induced liver hepatotoxicity, and key features of ferroptosis were detected, including persistent oxidative stress, iron overload, increased LPO, mitochondria damage, and the expression changes of GPX4, TFRC, and Ferritin. And in vitro and in vivo recovery tests showed that ferroptosis inhibitor Fer-1 treatment alleviated liver injury and fibrosis. The above results confirmed the critical role of ferroptosis in PS-NPs-induced hepatotoxicity. Furthermore, to better conclude our findings and understand the mechanistic causality within it, an adverse outcome pathway (AOP) framework was established. In total, this present study conducted the first experimental assessment of inhalation exposure to PS-NPs on the liver, identified that continuous inhaled PS-NPs could cause liver injury and fibrosis, and PS-NPs- ferroptosis provided a novel mechanistic explanation.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Nanopartículas , Animais , Camundongos , Microplásticos , Poliestirenos/toxicidade , Cirrose Hepática/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/etiologiaRESUMO
As the representative item of environmental chemical carcinogen, MNNG was closely associated with the onset of Gastric cancer (GC), while the underlying mechanisms remain largely unknown. Here, we comprehensively analyzed the potential clinical significance of METTL3 in multiple GC patient cohorts. Additionally, we demonstrated that long-term exposure to MNNG elevated METTL3 and EMT marker expression by in vitro and in vivo models. Furthermore, the depletion of METTL3 impacted the proliferation, migration, invasion, and tumorigenesis of MNNG malignant transformation cells and GC cells. By me-RIP sequencing, we identified a panel of vital miRNAs potentially regulated by METTL3 that aberrantly expressed in MNNG-induced GC cells. Mechanistically, we showed that METTL3 meditated miR-1184/TRPM2 axis by regulating the process of miRNA-118. Our results provide novel insights into critical epigenetic molecular events vital to MNNG-induced gastric carcinogenesis. These findings suggest the potential therapeutic targets of METTL3 for GC treatment.
Assuntos
Adenina/análogos & derivados , MicroRNAs , Neoplasias Gástricas , Humanos , Metilnitronitrosoguanidina , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Carcinogênese/induzido quimicamente , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transição Epitelial-Mesenquimal , MetiltransferasesRESUMO
Cardiovascular diseases remain the leading cause of death worldwide; therefore, there is increasing attention to developing physiological-related in vitro cardiovascular tissue models suitable for personalized healthcare and preclinical test. Recently, more complex and powerful in vitro models have emerged for cardiac research. Human cardiac organoids (HCOs) are three-dimensional (3D) cellular constructs similar to in vivo organs. They are derived from pluripotent stem cells and can replicate the structure, function, and biogenetic information of primitive tissues. High-fidelity HCOs are closer to natural human myocardial tissue than animal and cell models to some extent, which helps to study better the development process of the heart and the occurrence of related diseases. In this review, we introduce the methods for constructing HCOs and the application of them, especially in cardiovascular disease modeling and cardiac drug screening. In addition, we propose the prospects and limitations of HCOs. In summary, we have introduced the research progress of HCOs and described their innovation and practicality of them in the biomedical field.
RESUMO
Methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) were two core components of the N6-methyadenosine (m6A) methyltransferase complex (MTC) and played a basic role in maintaining an appropriate m6A level of target genes. In gastric cancer (GC), previous researches on the expression and role of METTL3 and METTL14 were not consistent, and their specific function and mechanism have remained elusive. In this study, the expression of METTL3 and METTL14 was evaluated based on the TCGA database, 9 paired GEO datasets, and our 33 GC patient samples, and METTL3 was highly expressed and acted as a poor prognostic factor, whereas METTL14 showed no significant difference. Moreover, GO and GSEA analyses were performed, and the results pointed out that METTL3 and METTL14 were jointly involved in multiple biological processes, while they could also take part in different oncogenic pathways independently. And BCLAF1 was predicted and identified as a novel shared target of METTL3 and METTL14 in GC. In total, we conducted a comprehensive analysis of METTL3 and METTL14 in GC including their expression, function, and role, which could provide a novel insight into the research of m6A modification in GC.
RESUMO
Nanoplastics are prevalent in the air and can be easily inhaled, posing a threat to respiratory health. However, there have been few studies investigating the impact of nanoplastics on lung injury, especially chronic obstructive pulmonary disease (COPD). Furthermore, cell and animal models cannot deeply understand the pollutant-induced COPD. Existing lung-on-a-chip models also lack interactions among immune cells, which are crucial in monitoring complex responses. In the study, we built the lung-on-a-chip to accurately recapitulate the structural features and key functions of the alveolar-blood barrier while integrating multiple immune cells. The stability and reliability of the lung-on-a-chip model were demonstrated by toxicological application of various environmental pollutants. We Further focused on exploring the association between COPD and polystyrene nanoplastics (PS-NPs). As a result, the cell viability significantly decreased as the concentration of PS-NPs increased, while TEER levels decreased and permeability increased. Additionally, PS-NPs could induce oxidative stress and inflammatory responses at the organ level, and crossed the alveolar-blood barrier to enter the bloodstream. The expression of α1-antitrypsin (AAT) was significantly reduced, which could be served as early COPD checkpoint on the lung-chips. Overall, the lung-on-a-chip provides a new platform for investigating the pulmonary toxicity of nanoplastics, demonstrating that PS-NPs can harm the alveolar-blood barrier, cause oxidative damage and inflammation, and increase the risk of COPD.
Assuntos
Poluentes Ambientais , Lesão Pulmonar , Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Animais , Microplásticos , Ecotoxicologia , Reprodutibilidade dos Testes , Pulmão/metabolismo , Poliestirenos/toxicidade , Dispositivos Lab-On-A-Chip , Nanopartículas/químicaRESUMO
N6-methyladenosine (m6A) methylation, the most prevalent post-transcriptional modification in eukaryotes, represents a highly dynamic and reversible process that is regulated by m6A methyltransferases, m6A demethylases and RNA-binding proteins during RNA metabolism, which affects RNA function. Notably, m6A modification is significantly enriched in the brain and exerts regulatory roles in neurogenesis and neurodevelopment through various mechanisms, further influencing the occurrence and progression of neurological disorders. This study systematically summarizes and discusses the latest findings on common m6A regulators, examining their expression, function and mechanisms in neurodevelopment and neurological diseases. Additionally, we explore the potential of m6A modification in diagnosing and treating neurological disorders, aiming to provide new insights into the molecular mechanisms and potential therapeutic strategies for neurological disorders.
Assuntos
Doenças do Sistema Nervoso , Neurogênese , Humanos , Encéfalo , Metiltransferases , Doenças do Sistema Nervoso/genética , RNARESUMO
Nanoplastics are a common type of contaminant in the air. However, no investigations have focused on the toxic mechanism of lung injury induced by nanoplastic exposure. In the present study, polystyrene nanoplastics (PS-NPs) caused ferroptosis in lung epithelial cells, which could be alleviated by ferrostatin-1, deferoxamine, and N-acetylcysteine. Further investigation found that PS-NPs disturbed mitochondrial structure and function and triggered autophagy. Mechanistically, oxidative stress-derived mitochondrial damage contributed to ferroptosis, and autophagy-dependent ferritinophagy was a pivotal intermediate link, resulting in ferritin degradation and iron ion release. Furthermore, inhibition of ferroptosis using ferrostatin-1 alleviated pulmonary and systemic toxicity to reverse the mouse lung injury induced by PS-NPs inhalation. Most importantly, the lung-on-a-chip was further used to clarify the role of ferroptosis in the PS-NPs-induced lung injury by visualizing the ferroptosis, oxidative stress, and alveolar-capillary barrier dysfunction at the organ level. In summary, our study indicated that ferroptosis was an important mechanism for nanoplastics-induced lung injury through different lung cells, mouse inhalation models, and three-dimensional-based lung-on-a-chip, providing an insightful reference for pulmonary toxicity assessment of nanoplastics.
Assuntos
Ferroptose , Lesão Pulmonar , Nanopartículas , Animais , Camundongos , Lesão Pulmonar/induzido quimicamente , Poliestirenos , Microplásticos , Estresse Oxidativo , Modelos Animais de DoençasRESUMO
Plastic pollution has become a significant global problem over the years, leading to the continuous decomposition and accumulation of micro/nanoplastics (MNPLs) in the environment. As a result, human exposure to these MNPLs is inevitable. The liver, in particular, is highly susceptible to potential MNPL toxicity. In this study, we systematically reviewed the current literature on MNPLs-induced hepatotoxicity and collected data on toxic events occurring at different biological levels. Then, to better understand the cause-mechanism causality, we developed an Adverse Outcome Pathway (AOP) framework for MNPLs-induced hepatotoxicity. The AOP framework provided insights into the mechanism of MNPL-induced hepatotoxicity and highlighted potential health risks such as liver dysfunction and inflammation, metabolism disorders and liver fibrosis. Moreover, we discussed the potential application of emerging toxicological models in the hepatotoxicity study. Liver organoids and liver-on-chips, which can simulate the structure and function of the liver in vitro, offer a promising alternative platform for toxicity testing and risk assessment. We proposed combining the AOP framework with these emerging toxicological models to improve our understanding of the hepatotoxic effects of MNPLs. Overall, this study performed a preliminary exploration of novel toxicological methodologies to assess the hepatotoxicity of MNPLs, providing a deeper understanding of environmental toxicology.
Assuntos
Rotas de Resultados Adversos , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Microplásticos , Doença Hepática Induzida por Substâncias e Drogas/etiologiaRESUMO
As a representative example of an environmental chemical carcinogen, MNNG exposure is closely associated with the onset of gastric cancer (GC) where N6-methyladenosine (m6A) RNA methylation tends to be the critical epigenetic event. However, the effect of m6A modification on long non-coding RNAs (lncRNAs) in MNNG-induced GC onset is still unclear. To address the above issue, based on the Methylated RNA immunoprecipitation sequencing (MeRIP-seq) data of MNNG-induced malignant cells (MCs) and GC cells, we comprehensively analyzed the MNNG exposure-associated vital lncRNAs. MeRIP-seq analysis identified 1432 lncRNA transcripts in the MC cell, and 3520 lncRNA transcripts were found to be m6A modified in the GC cell, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that MNNG exposure could spark cellular localization change, which might be the critical cellular note variation for malignant transformation. We demonstrated that METTL3 is responsible for N6 methylation of lncRNAs and identified SNHG7 as a downstream target of METTL3. More importantly, we observed that SNHG7 was progressively up-regulated during gastric carcinogenesis by MNNG exposure. Finally, we investigated SNHG7 expression in different stages of GC malignancies and found that elevated SNHG7 expression correlated with advanced clinical features and poor prognosis in GC. In conclusion, our study found for the first time that METTL3 regulates the m6A methylation level of lncRNA SNHG7 and its expression in MNNG exposure-induced GC, suggesting that SNHG7 as a predictive biomarker or therapeutic target for GC.
RESUMO
The health risks caused by environmental pollution have long been of substantial concern. With the development of epigenetics, a large number of studies have demonstrated that N6-methyladenosine (m6A) modification is involved in the regulation of various important life activities associated with various diseases. Recent studies have revealed that m6A plays a key role in health damage caused by environmental exposure by regulating post-transcriptional gene expression. Therefore, our study outlined the effects of environmental pollutant exposure on m6A methylation and its regulator levels. Moreover, we found that m6A methylation modifications were involved in the development of various health damages by regulating important life activities in vivo, such as reactive oxygen species imbalance, apoptosis, epithelial-mesenchymal transition (EMT), and inflammatory processes. More importantly, we delved into the regulatory mechanisms of m6A methylation dysregulation in environmental pollution-induced diseases. Finally, by examining the published literature, we found that methyltransferase-like protein 3 (METTL3) and fat mass- and obesity-associated protein (FTO) were potentially used as biomarkers of health damage induced by particulate matter exposure and heavy metal exposure, respectively. The current studies on regulators of METTL3 and FTO were more promising to bring new perspectives for the treatment of environmental health-related diseases.