Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 146(16)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31375478

RESUMO

How developing vascular networks acquire the right balance of arteries, veins and lymphatic vessels to efficiently supply and drain tissues is poorly understood. In zebrafish embryos, the robust and regular 50:50 global balance of intersegmental veins and arteries that form along the trunk prompts the intriguing question of how does the organism keep 'count'? Previous studies have suggested that the ultimate fate of an intersegmental vessel (ISV) is determined by the identity of the approaching secondary sprout emerging from the posterior cardinal vein. Here, we show that the formation of a balanced trunk vasculature involves an early heterogeneity in endothelial cell behaviour and Notch signalling activity in the seemingly identical primary ISVs that is independent of secondary sprouting and flow. We show that Notch signalling mediates the local patterning of ISVs, and an adaptive flow-mediated mechanism subsequently fine-tunes the global balance of arteries and veins along the trunk. We propose that this dual mechanism provides the adaptability required to establish a balanced network of arteries, veins and lymphatic vessels.


Assuntos
Padronização Corporal , Receptores Notch/metabolismo , Peixe-Zebra/embriologia , Animais , Artérias/embriologia , Polaridade Celular , Células Endoteliais/fisiologia , Heterogeneidade Genética , Vasos Linfáticos/embriologia , Fluxo Sanguíneo Regional , Transdução de Sinais , Veias/embriologia , Peixe-Zebra/sangue
2.
Cell Stem Cell ; 20(3): 296-297, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257708

RESUMO

For almost a decade, mesenchymal stem cells (MSCs) were believed to reside as perivascular cells in vivo. In this issue of Cell Stem Cell, Guimarães-Camboa et al. (2017) challenge this idea and use lineage tracing to demonstrate that perivascular cells do not behave as tissue-specific progenitors in various organs, despite showing MSC potential in vitro.


Assuntos
Células-Tronco Mesenquimais , Pericitos , Diferenciação Celular
3.
Nat Cell Biol ; 18(4): 443-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928868

RESUMO

How vascular tubes build, maintain and adapt continuously perfused lumens to meet local metabolic needs remains poorly understood. Recent studies showed that blood flow itself plays a critical role in the remodelling of vascular networks, and suggested it is also required for the lumenization of new vascular connections. However, it is still unknown how haemodynamic forces contribute to the formation of new vascular lumens during blood vessel morphogenesis. Here we report that blood flow drives lumen expansion during sprouting angiogenesis in vivo by inducing spherical deformations of the apical membrane of endothelial cells, in a process that we have termed inverse blebbing. We show that endothelial cells react to these membrane intrusions by local and transient recruitment and contraction of actomyosin, and that this mechanism is required for single, unidirectional lumen expansion in angiogenic sprouts. Our work identifies inverse membrane blebbing as a cellular response to high external pressure. We show that in the case of blood vessels such membrane dynamics can drive local cell shape changes required for global tissue morphogenesis, shedding light on a pressure-driven mechanism of lumen formation in vertebrates.


Assuntos
Vasos Sanguíneos/embriologia , Morfogênese , Neovascularização Fisiológica , Actomiosina/metabolismo , Animais , Animais Geneticamente Modificados , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Células Endoteliais/metabolismo , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Fluxo Sanguíneo Regional , Imagem com Lapso de Tempo , Peixe-Zebra
4.
Dev Cell ; 32(1): 123-32, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25584798

RESUMO

During blood vessel formation, endothelial cells (ECs) establish cell-cell junctions and rearrange to form multicellular tubes. Here, we show that during lumen formation, the actin nucleator and elongation factor, formin-like 3 (fmnl3), localizes to EC junctions, where filamentous actin (F-actin) cables assemble. Fluorescent actin reporters and fluorescence recovery after photobleaching experiments in zebrafish embryos identified a pool of dynamic F-actin with high turnover at EC junctions in vessels. Knockdown of fmnl3 expression, chemical inhibition of formin function, and expression of dominant-negative fmnl3 revealed that formin activity maintains a stable F-actin content at EC junctions by continual polymerization of F-actin cables. Reduced actin polymerization leads to destabilized endothelial junctions and consequently to failure in blood vessel lumenization and lumen instability. Our findings highlight the importance of formin activity in blood vessel morphogenesis.


Assuntos
Actinas/metabolismo , Embrião não Mamífero/metabolismo , Endotélio Vascular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Oligonucleotídeos Antissenso/farmacologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Citoesqueleto de Actina/metabolismo , Junções Aderentes/fisiologia , Animais , Embrião não Mamífero/citologia , Endotélio Vascular/citologia , Forminas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Morfolinos/farmacologia , Polimerização , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
5.
Nat Cell Biol ; 16(4): 309-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658686

RESUMO

Endothelial cells show surprising cell rearrangement behaviour during angiogenic sprouting; however, the underlying mechanisms and functional importance remain unclear. By combining computational modelling with experimentation, we identify that Notch/VEGFR-regulated differential dynamics of VE-cadherin junctions drive functional endothelial cell rearrangements during sprouting. We propose that continual flux in Notch signalling levels in individual cells results in differential VE-cadherin turnover and junctional-cortex protrusions, which powers differential cell movement. In cultured endothelial cells, Notch signalling quantitatively reduced junctional VE-cadherin mobility. In simulations, only differential adhesion dynamics generated long-range position changes, required for tip cell competition and stalk cell intercalation. Simulation and quantitative image analysis on VE-cadherin junctional patterning in vivo identified that differential VE-cadherin mobility is lost under pathological high VEGF conditions, in retinopathy and tumour vessels. Our results provide a mechanistic concept for how cells rearrange during normal sprouting and how rearrangement switches to generate abnormal vessels in pathologies.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Simulação por Computador , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Junções Intercelulares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
J Cell Biol ; 191(4): 809-25, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21059851

RESUMO

The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9-11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.


Assuntos
Diferenciação Celular/fisiologia , Fase G1/fisiologia , Proteína do Retinoblastoma/metabolismo , Animais , Padronização Corporal/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/fisiologia , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína p130 Retinoblastoma-Like/genética , Proteína p130 Retinoblastoma-Like/metabolismo , Teratoma/metabolismo , Teratoma/patologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA