Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279915

RESUMO

Salmonellosis remains a major foodborne disease threat to public health worldwide. Swine are considered a reservoir for many Salmonella serotypes affecting humans; however, not all serotypes of concern in food animal products cause clinical signs of infection in swine. The objective of this study was to evaluate the presence and distribution of Salmonella spp. in finishing pigs at commercial farms across Kansas (USA). Five farms were selected and sampled when pigs weighed between 125 and 136 kg. Samples were collected and transported to the laboratory for processing following USDA-FSIS guidelines. Susceptibility and resistance profiles were also studied. Fifty-three percent (100/186) of samples were culture positive for Enterobacteriaceae, and 14% (14/100) were confirmed Salmonella positive by PCR with three of five farms having no PCR-positive samples. Salmonella serotype Braenderup was the most common serovar identified in environmental samples, while Salm. Infantis, Agona, and Montevideo were identified in fecal samples. Multidrug resistance patterns were only found in Farm 3, in fecal samples and in one floor sample. The observations reported in this study highlight areas of concern, such as locations prone to fecal contamination, to be considered when cleaning and sanitizing between groups of pigs to decrease presence of Salmonella spp. in farm environments.


Assuntos
Salmonelose Animal , Doenças dos Suínos , Humanos , Suínos , Animais , Fazendas , Kansas/epidemiologia , Salmonelose Animal/epidemiologia , Salmonella , Fezes , Doenças dos Suínos/epidemiologia
2.
Emerg Infect Dis ; 25(5): 891-897, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30761988

RESUMO

African swine fever virus (ASFV) is a contagious, rapidly spreading, transboundary animal disease and a major threat to pork production globally. Although plant-based feed has been identified as a potential route for virus introduction onto swine farms, little is known about the risks for ASFV transmission in feed. We aimed to determine the minimum and median infectious doses of the Georgia 2007 strain of ASFV through oral exposure during natural drinking and feeding behaviors. The minimum infectious dose of ASFV in liquid was 100 50% tissue culture infectious dose (TCID50), compared with 104 TCID50 in feed. The median infectious dose was 101.0 TCID50 for liquid and 106.8 TCID50 for feed. Our findings demonstrate that ASFV Georgia 2007 can easily be transmitted orally, although higher doses are required for infection in plant-based feed. These data provide important information that can be incorporated into risk models for ASFV transmission.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/virologia , Ração Animal/virologia , Febre Suína Africana/epidemiologia , Febre Suína Africana/transmissão , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Microbiologia de Alimentos , Georgia , Suínos , Virulência
3.
Animals (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338036

RESUMO

The extended storage of feed ingredients has been suggested as a method to mitigate the risk of pathogen transmission through contaminated ingredients. To validate the approach of extended storage of complete swine feed for the inactivation of swine viruses, an experiment was conducted wherein swine feed was inoculated with 10 mL of 1 × 105 TCID50/mL of porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and Senecavirus A (SVA) and stored for 58 d at 23.9 °C. Measures of feed quality were also evaluated at the initiation and conclusion of the storage period including screening for mycotoxins, characterization of select microbiological measures, and stability of phytase and dietary vitamins. Storing feed for 58 d under either ambient or anaerobic and temperature-controlled storage conditions did not result in substantial concerns related to microbiological profiles. Upon exposure to the feed following 58 d of storage in a swine bioassay, previously confirmed naïve pigs showed no signs of PEDV or SVA replication as detected by the PCR screening of oral fluids and serum antibody screening. Infection with SVA was documented in the positive control room through diagnostic testing through the State of Minnesota. For PRRSV, the positive control room demonstrated infection. For rooms consuming inoculated feed stored for 58 d, there was no evidence of PRRSV infection with the exception of unintentional aerosol transmission via a documented biocontainment breach. In summary, storing feed for 58 d at anaerobic and temperature-controlled environmental conditions of 23.9 °C validates that the extended storage of complete swine feed can be a method to reduce risks associated with pathogen transmission through feed while having minimal effects on measures of nutritional quality.

4.
Transl Anim Sci ; 8: txae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343389

RESUMO

African swine fever virus (ASFV) is a highly infectious virus known to cause substantial mortality and morbidity in pigs. The transmissibility and severity of disease within pigs, as well as the potentially resultant catastrophic trade ramifications, warrant its status as a foreign animal disease of substantial concern to the United States. The ASFV virus can survive for extended periods of time outside its host, and its greatest concentration is often observed in blood and organs, products that are frequently used as raw materials to manufacture porcine-derived ingredients fed to animals in the United States. Unlike ruminant-based proteins that cannot be fed to ruminant animals, it is permissible to feed porcine-derived ingredients to pigs in the United States. However, the increased threat of ASFV entry into the United States and our evolving understanding of viral transmission by feedstuffs warrant further investigation into this practice. The objectives of this review are to describe the current knowledge of ASFV survival in raw materials used to produce porcine-based ingredients, identify priorities for future research, and summarize potential options for managing risk until additional knowledge can be gained. While limited data is available for ASFV-specific mitigation, the temperatures used in both spray-drying and rendering have proven to effectively reduce viral concentrations of multiple swine viruses below detectable limits. However, some of these procedures may not eliminate the risk of recontamination, which necessitates the need for additional prevention or mitigation measures. Most published research in this area relies on direct inoculation of raw ingredient, not the finished porcine-derived ingredient. Currently, three published studies report ASFV mitigation in either thermally processed conditions (>40 °C) or ingredient quarantine (<40 °C). Virus inactivation, or the reduction of viral concentrations below detectable levels, was observed in the thermally processed study and one of the two ingredient quarantine studies. In conclusion, there is little knowledge to eliminate the risk of recontamination in porcine-derived ingredients; therefore, future research should aim to support and validate the currently available literature for the continued and safe production of porcine-derived ingredients in the event of a foreign animal disease outbreak.

5.
J Anim Sci ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305206

RESUMO

Two experiments evaluated the effects of precision feeding standardized ileal digestible (SID) Lys during lactation. Sows were blocked by parity and allotted to treatment on d 2 of lactation. In both experiments, sow body weight (BW), backfat (BF), loin depth (LD), and estimated N excretion were evaluated as well as litter growth performance. In Exp. 1, 95 sows and litters were used. Three dietary treatments were provided using 2 diets: a low (0.25% SID Lys) and high Lys diet (1.10% SID Lys). Treatments included a control diet (1.10% SID Lys) fed throughout lactation, and NRC or INRA treatment curves for Lys intake. Sows fed NRC or INRA treatment curves received blends of low and high Lys diets using a computerized lactation feeder (Gestal Quattro Opti Feeder, Jyga Technologies, St-Lambert-de-Lauzon, Quebec, CA) to target a specific Lys intake each day of lactation based on NRC and INRA models for parity and litter size. In Exp. 2, 56 sows and litters were used with three treatments, a control diet (1.10% SID Lys fed throughout lactation) and either a static or dynamic blend curve. For both curve treatments, low (0.40% SID Lys) and high Lys (1.10% SID Lys) diets were blended to reach target Lys intake. The difference between the static and dynamic curves was that the dynamic curves were adjusted based on actual Lys intake and static curves were not. Lysine intake curves were based on NRC model estimates, but targets were increased by 20% to target average Lys intake of 60 g/d across parities based on results of Exp. 1. In both experiments, no differences (P > 0.05) in sow average daily feed intake or sow BW, BF, or LD change were observed. Sows fed the control diets had greater Lys intake (g/day; P < 0.05) compared to sows fed either of the blended treatment curves. In Exp. 1, pigs from sows fed the control diet had greater (P < 0.05) BW at weaning and preweaning average daily gain (ADG) compared to sows fed the INRA treatment curve, with pigs from sows fed the NRC treatment curve intermediate. However, in Exp. 2, no differences (P > 0.05) were observed in pig weight at weaning or ADG. In both experiments, sows fed the blended treatment curves had lower (P < 0.05) calculated N excretion. In summary, for a litter size of 13.5 weaned pigs, 60 g/d of SID Lys is sufficient to maximize litter weight gain and can be achieved through blending low and high Lys diets. Precision feeding reduced N excretion compared to feeding a single diet throughout lactation.

6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39193832

RESUMO

A total of 360 pigs (DNA 600 × 241; initially 5.8 kg) were used in a 45-d growth study to evaluate the effects of adding 25(OH)D3 with 3 levels of standardized total tract digestible (STTD) P on nursery pig growth performance, bone and urine characteristics, and serum vitamin D. Pigs were weaned at 19 d of age and randomly allotted to 1 of 6 dietary treatments with 5 pigs per pen and 12 replications per treatment. Dietary treatments were arranged in a 2 × 3 factorial with main effects of 25(OH)D3 (0 or 50 µg/kg equivalent to 2,000 IU/kg of vitamin D3; Hy-D, dsm-firmenich, Plainsboro, NJ) and STTD P (70%, 100%, or 130% of the NRC [NRC 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC) requirement estimate on a dietary percentage basis]. All diets contained 1,653 IU/kg of vitamin D3. On day 45, 1 pig per pen was euthanized to collect the right fibula, metacarpal, and 2nd and 10th ribs. Overall, increasing STTD P increased (quadratic, P ≤ 0.003) ADG, ADFI, and G:F with minimal improvement above 100% of the NRC STTD P requirement estimate. Added 25(OH)D3 had no effect on growth performance. Increasing STTD P decreased urinary Ca concentration (linear, P < 0.001) and increased urinary P concentration (quadratic, P < 0.001). When pigs were fed added 25(OH)D3, serum 25(OH)D3 increased (quadratic, P = 0.005) as STTD P increased but no differences were observed when 25(OH)D3 was not added and STTD P increased (25(OH)D3 × STTD P interaction, P = 0.032). When pigs were fed 25(OH)D3, serum 1,25(OH)2D3 increased (quadratic, P < 0.001) as STTD P decreased but the increase was not significant when no 25(OH)D3 was fed (STTD P × 25(OH)D3 interaction, P = 0.002). Bone ash percentage and weight increased (quadratic, P ≤ 0.065) in all bones as STTD P increased. Added 25(OH)D3 had no effect on bone density or bone ash weight; however, the reduction in bone ash percentage observed with reducing STTD P level tended to be less when 25(OH)D3 was provided (linear interaction, P = 0.098). Increasing STTD P decreased the likelihood of abnormal histologic bone lesions in the 10th rib. In summary, added 25(OH)D3 had limited effect on growth performance; however, an increase in serum concentrations of 25(OH)D3 and 24,25(OH)2D3 was observed. The addition of 25(OH)D3 to P-deficient diets increased percentage bone ash. Increasing STTD P to 100% of NRC [NRC 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC] requirement estimate increased growth and 130% of NRC maximized bone ash.


Vitamin D3 must be activated through a 2-step hydroxylation process to be metabolically active. Dietary addition of 25-hydroxyvitamin D3 [25(OH)D3] bypasses the hydroxylation step in the conversion of vitamin D3 to 25(OH)D3 in the liver and provides a greater concentration of 25(OH)D3 in circulation. The hypothesis of our experiment was that supplementing 25(OH)D3 to existing dietary levels of vitamin D3 would increase pig growth performance and bone development when added to diets deficient or marginally deficient in P. Overall, added 25(OH)D3 had limited effect on growth performance or urine parameters; however, added 25(OH)D3 increased serum concentrations of 25(OH)D3 and 24,25-dihydroxycholecalciferol [24,25(OH)2D3] and increased bone ash when added to diets deficient in P for bone mineralization (70 or 100% of the NRC (2012) standardized total tract digestible [STTD] P requirement estimate). Increasing STTD P to 100% of the NRC (2012) requirement estimate increased growth while 130% of NRC maximized bone ash.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Vitamina D , Animais , Dieta/veterinária , Ração Animal/análise , Suínos/crescimento & desenvolvimento , Suínos/fisiologia , Vitamina D/sangue , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Masculino , Fósforo/sangue , Feminino , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Suplementos Nutricionais/análise , Calcifediol/farmacologia , Calcifediol/administração & dosagem , Calcifediol/sangue , Distribuição Aleatória , Fósforo na Dieta/farmacologia , Fósforo na Dieta/administração & dosagem , Fósforo na Dieta/metabolismo
7.
Viruses ; 16(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339927

RESUMO

The recent incursion of highly pathogenic influenza viruses into dairy cattle opens new insights for influenza virus ecology and its interspecies transmission and may have a significant impact on public health and agriculture. The aim of this study was to determine the stability of a bovine highly pathogenic avian influenza H5N1 virus isolate in the milk byproduct lactose and to evaluate two inactivation methods using industrial procedures. The bovine isolate of the highly pathogenic avian influenza H5N1 virus was stable for 14 days in a concentrated lactose solution under refrigerated conditions. Heat or citric acid treatments successfully inactivated the virus in lactose. This study highlights the persistence of HPAIV in lactose and its efficient inactivation under industrial standards.


Assuntos
Virus da Influenza A Subtipo H5N1 , Lactose , Leite , Inativação de Vírus , Lactose/farmacologia , Animais , Bovinos , Leite/virologia , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Temperatura Alta , Ácido Cítrico/farmacologia
8.
Transl Anim Sci ; 8: txae106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346699

RESUMO

Inclusion of wheat grain can offer feeding opportunities in swine diets because of its high starch, crude protein (CP), amino acid (AA), and phosphorus (P) content. High concentrations of starch within wheat grain makes it a good energy source for swine. Mean energy content of wheat was 4,900 and 3,785 kcal/kg dry matter (DM) for digestible energy and metabolizable energy, respectively. CP concentration can vary based on the class of wheat which include hard red winter, hard red spring, soft red winter, hard white, soft white, and durum. The average CP of all wheat data collected in this review was 12.6% with a range of 8.5% to 17.6%. The AA concentration of wheat increases with increasing CP with the mean Lys content of 0.38% with a standardized ileal digestibility (SID) of 76.8%. As CP of wheat increases, the SID of AA in wheat also increases. Mean P of wheat was 0.27% and median P was 0.30%. Off-quality wheat is often associated with sprouts, low-test weight, or mycotoxin-contamination. Sprouted and low-test weight wheat are physical abnormalities associated with decreased starch within wheat kernel that leads to reductions in energy. The assumed energy value of wheat grain may need to be reduced by up to 10% when the proportion of sprouted to non-sprouted wheat is up to 40% whereas above 40%, wheat's energy may need to be reduced by 15% to 20%. Low-test weight wheat appears to not influence pig performance unless it falls below 644 kg/m3 and then energy value should be decreased by 5% compared to normal wheat. Deoxynivalenol (DON) contamination is most common with wheat grain. When content is above the guidance level of 1 mg/kg of DON in the complete diet, each 1 mg/kg increase in a DON-contaminated wheat-based diet will result in a 11% and 6% reduction in ADG and ADFI for nursery pigs, and a 2.7% and 2.6% reduction in ADG and ADFI, in finishing pigs, respectively. Wheat co-products are produced from the flour milling industry. Wheat co-products include wheat bran middlings, millrun, shorts, and red dog. Wheat co-products can be used in swine diets, but application may change because of differences in the final diet energy concentration due to changes in the starch and fiber levels of each wheat co-product. However, feeding wheat co-products are being evaluated to improve digestive health. Overall, wheat and wheat co-products can be fed in all stages of production if energy and other nutrient characteristics are considered.

9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38571338

RESUMO

A total of 720 barrows (line 200 × 400, DNA genetics) were used in two 42-d nursery trials (initially 6.20 ±â€…0.12 kg and 5.63 ±â€…0.16 kg, respectively) to evaluate strategies for allotting pigs to pens in randomized controlled trials. At placement, the population was split into three cohorts with similar average weight and standard deviation and randomly assigned to one of the three allotment strategies. Strategy 1 (random) utilized a simple randomization strategy with each pig randomized to pens independent of all other pigs. Strategy 2 (body weight [BW] distribution) sorted each pig within the cohort into one of the five BW groups. One pig from each weight group was then randomly assigned to a pen such that distribution of BW within pen was uniform across pens. Strategy 3 (BW grouping) sorted pigs within the cohort into 3 BW categories: light, medium, and heavy. Within each BW category, pigs were randomized to pen to create pens of pigs from each BW category. Within each experiment, there were 72 pens with five pigs per pen and 24 pens per allotment strategy. For all strategies, once pigs were allotted to pens, pens were allotted to one of the two treatments for a concurrent trial. In experiment 1, environmental enrichment using ropes tied near the pan of the feeder was compared to a control with no enrichment. In experiment 2, treatment diets consisted of basal levels of Zn and Cu from the trace mineral premix for the duration of the study (110 and 17 mg/kg, respectively; control), or diets (supplemented control) with carbadox (50 g/ton; Mecadox, Phibro Animal Health, Teaneck, NJ) fed in phase 1 (days 0 to 22) and 2 (days 22 to 43), pharmacological levels of Zn and Cu (2,414 mg/kg Zn from ZnO; 168 mg/kg Cu from CuSO4) fed in phase 1, and only pharmacological levels of Cu (168 mg/kg Cu from CuSO4) fed in phase 2. These treatment designs were used to determine the impact on coefficient of variation (CV) and to estimate the number of replications required to find significant treatment differences based on allotment strategy. There were no meaningful allotment strategy × treatment interactions for either study. For between-pen CV, pigs allotted using BW distribution and BW grouping strategies had the lowest CV at allotment and final weight in both trials. For overall average daily gain in experiments 1 and 2 in experiment 2, the BW distribution strategy required the fewest replications to detect differences in performance. However, there is no meaningful difference between allotment strategies in replications required to detect significant differences for gain:feed ratio.


Decreasing variation between experimental units increases the likelihood of finding a statistically significant difference if one exists. Assignment of animals to experimental units (pens) may contribute to that variation. Therefore, the purpose of this trial was to investigate the effect that different methods of allotting pigs to pens (experimental unit) have on variation and in turn, the number of replications required to detect a significant difference of a given amount between treatments. The random strategy assigned pigs to pens in a completely random fashion. The body weight (BW) distribution strategy ordered pigs from lightest to heaviest and created five groups based on BW. Each pen was randomly assigned one pig from each of the five groups. The BW grouping strategy again ordered pigs from lightest to heaviest but split pigs into three groups based on BW and each pen was randomly assigned pigs from only one BW group such that there were pens of light pigs, pens of medium pigs, and pens of heavy pigs. Ultimately, the best allotment strategy depends on the parameter of interest. For final BW and overall ADG, the BW grouping method required the fewest pens to detect statistically significant differences.


Assuntos
Criação de Animais Domésticos , Animais , Masculino , Suínos , Criação de Animais Domésticos/métodos , Distribuição Aleatória , Peso Corporal , Ração Animal/análise , Dieta/veterinária
10.
Transl Anim Sci ; 8: txae063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689757

RESUMO

Due to its importance in animal feed, soybean meal has been extensively studied to optimize its use in livestock diets. Despite extensive research, the industry has not fully characterized specific areas of soybean processing such as the inclusion of soybean byproducts added back to soybean meal during processing. Soybean processing byproducts can encompass a large variety of materials including weeds and foreign material, soybean hulls, gums, soapstocks, lecithins, spent bleaching clays, and deodorizer distillates. Despite the potential for being added back to soybean meal when a crushing plant is integrated with an oil refinery, there is currently limited information on the composition of many of these soybean processing byproducts and their subsequent effects on soybean meal quality and animal performance. Therefore, there may be opportunities for a new area of research focused on soybean processing byproducts and their optimal use within the livestock feed industry. This review summarizes the current information on soybean byproducts with a focus on identifying the areas with the greatest potential for future research in swine and poultry nutrition.

11.
Transl Anim Sci ; 8: txae087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863597

RESUMO

Calcium (Ca) and phosphorus (P) are minerals involved in biological functions and essential structural components of the skeleton. The body tightly regulates Ca and P to maintain homeostasis. Maternal needs for Ca and P increase during gestation and lactation to support conceptus growth and milk synthesis. Litter size and litter average daily gain (ADG) have a large effect on Ca and P requirements for sows because as they increase, the requirements increase due to a greater need from the sow. The objective of this review was to summarize published literature on Ca and P requirements in gestating and lactating sows derived from empirical data and factorial models. A total of nine empirical studies and seven factorial models were reviewed for determining the Ca and P requirements in gestation. For lactation, there were six empirical studies and seven factorial models reviewed. Empirical studies determined requirements based on the observed effect of Ca and P on bone mineralization, sow and litter performance, and milk characteristics. Factorial models generated equations to estimate Ca and P requirements using the main components of maintenance, fetal and placental growth, and maternal retention in gestation. The main components for factorial equations in lactation include maintenance and milk production. In gestation, the standardized total tract digestible phosphorus (STTD P) requirement estimates from empirical studies range from 5.4 to 9.5 g/d with total Ca ranging from 12.9 to 18.6 g/d to maximize bone measurements or performance criteria. According to the factorial models, the requirements increase throughout gestation to meet the needs of the growing fetuses and range from 7.6 to 10.6 g/d and 18.4 to 38.2 g/d of STTD P and total Ca, respectively, on day 114 of gestation for parity 1 sows. During lactation, STTD P requirement estimates from empirical studies ranged from 8.5 to 22.1 g/d and total Ca ranged from 21.2 to 50.4 g/d. For the lactation factorial models, STTD P requirements ranged from 14.2 to 25.1 g/d for STTD P and 28.4 to 55.6 g/d for total Ca for parity 1 sows with a litter size of 15 pigs. The large variation in requirement estimates makes it difficult to define Ca and P requirements; however, a minimum level of 6.0 and 22.1 g/d of STTD P during gestation and lactation, respectively, appears to be adequate to meet basal requirements. The limited data and high variation indicate a need for future research evaluating Ca and P requirements for gestating and lactating sows.

12.
bioRxiv ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39185164

RESUMO

A bovine isolate of highly pathogenic avian influenza H5N1 virus was stable for 14 days in a concentrated lactose solution at under refrigerated conditions. Heat or citric acid treatments successfully inactivated viruses in lactose. This study highlights the persistence of HPAIV in lactose and its efficient inactivation under industrial standards.

13.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563521

RESUMO

Pigs from 64 commercial sites across 14 production systems in the Midwest United States were evaluated for baseline biological measurements used to determine bone mineralization. There were three pigs selected from each commercial site representing: 1) a clinically normal pig (healthy), 2) a pig with evidence of clinical lameness (lame), and 3) a pig from a hospital pen that was assumed to have recent low feed intake (unhealthy). Pigs ranged in age from nursery to market weight, with the three pigs sampled from each site representing the same age or phase of production. Blood, urine, metacarpal, fibula, 2nd rib, and 10th rib were collected and analyzed. Each bone was measured for density and ash (defatted and non-defatted technique). A bone × pig type interaction (P < 0.001) was observed for defatted and non-defatted bone ash and density. For defatted bone ash, there were no differences among pig types for the fibulas, 2nd rib, and 10th rib (P > 0.10), but metacarpals from healthy pigs had greater (P < 0.05) percentage bone ash compared to unhealthy pigs, with the lame pigs intermediate. For non-defatted bone ash, there were no differences among pig types for metacarpals and fibulas (P > 0.10), but unhealthy pigs had greater (P < 0.05) non-defatted percentage bone ash for 2nd and 10th ribs compared to healthy pigs, with lame pigs intermediate. Healthy and lame pigs had greater (P < 0.05) bone density than unhealthy pigs for metacarpals and fibulas, with no difference observed for ribs (P > 0.10). Healthy pigs had greater (P < 0.05) serum Ca and 25(OH)D3 compared to unhealthy pigs, with lame pigs intermediate. Healthy pigs had greater (P < 0.05) serum P compared to unhealthy and lame pigs, with no differences between the unhealthy and lame pigs. Unhealthy pigs excreted significantly more (P < 0.05) P and creatinine in the urine compared to healthy pigs with lame pigs intermediate. In summary, there are differences in serum Ca, P, and vitamin D among healthy, lame, and unhealthy pigs. Differences in bone mineralization among pig types varied depending on the analytical procedure and bone, with a considerable range in values within pig type across the 14 production systems sampled.


There is little literature or data comparing bone diagnostic results for healthy, lame, and unhealthy pigs. Typically, diagnosticians assessing clinical lameness cases in pigs will measure bone mineralization along with histopathological evaluation to diagnose and assess the severity of metabolic bone disease. Bone ash is the primary method to determine bone mineralization, with the removal of the lipid in the bone (defatting) before the bone is ashed, compared to not removing the lipid before the ashing (non-defatted). Defatting the bone reduces the amount of variation across the bones compared to non-defatting. In this diagnostic survey, there was no difference among the healthy, lame, or unhealthy pigs when comparing defatted bone ash, however, unhealthy pigs had an increased bone ash percentage compared to the healthy and lame pigs when the bones were assessed using the non-defatted procedure. There was variation across production systems and pig types for serum vitamin D. When comparing the pig types, healthy pigs had increased serum Ca, P, and vitamin D [25(OH)D3] compared to the unhealthy pigs, with the lame pigs intermediate.


Assuntos
Calcificação Fisiológica , Minerais , Suínos , Animais , Densidade Óssea , Costelas , Ração Animal/análise , Dieta
14.
Transl Anim Sci ; 8: txae049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623565

RESUMO

Three studies were conducted evaluating the use of benzoic acid in swine diets. In experiment 1, 350 weanling barrows (DNA 200 × 400; initially 5.9 ±â€…0.04 kg) were allotted to one of the five dietary treatments with 14 pens per treatment. Diets were fed in three phases: phase 1 from weaning to day 10, phase 2 from days 10 to 18, and phase 3 from days 18 to 38. Treatment 1 contained no benzoic acid throughout all three phases (weaning to day 42). Treatment 2 included 0.50% benzoic acid throughout all three phases. Treatment 3 contained 0.50% benzoic acid in phases 1 and 2, and 0.25% benzoic acid in phase 3. Treatment 4 contained 0.50% benzoic acid in phases 1 and 2, and no benzoic acid in phase 3. Treatment 5 contained 0.50% benzoic acid in phase 1, 0.25% benzoic acid in phase 2, and no benzoic acid in phase 3. For the overall period, pigs fed 0.50% in the first two phases and 0.25% benzoic acid in the final phase had greater (P < 0.05) average daily gain (average daily gain) than pigs fed no benzoic acid through all three phases, or pigs fed 0.50% in the first two phases and no benzoic acid in the final phase, with pigs fed the other treatments intermediate. Pigs fed 0.50% in the first two phases and 0.25% benzoic acid in the final phase had improved (P < 0.05) gain-to-feed ratio (G:F) compared with pigs fed no benzoic acid throughout all three phases, pigs fed 0.50% in the first two phases and no benzoic acid in the third phase, or pigs fed 0.50%, 0.25%, and no benzoic acid, respectively. For experiment 2, a 101-d trial was conducted using two groups of 1,053 finishing pigs (2,106 total pigs; PIC 337 × 1,050; initially 33.3 ±â€…1.9 kg). Dietary treatments were corn-soybean meal-dried distillers grains with solubles-based with the addition of none, 0.25%, or 0.50% benzoic acid. Overall, pigs fed increasing benzoic acid had a tendency for increased average daily feed intake (linear, P = 0.083) but decreased G:F (linear, P < 0.05). In experiment 3, 2,162 finishing pigs (DNA 600 × PIC 1050; initially 31.4 ±â€…2.2 kg) were used in a 109-d trial. Dietary treatments were formulated with or without 0.25% benzoic acid. For the overall experimental period, pigs fed benzoic acid had increased (P < 0.05) G:F. In summary, feeding benzoic acid elicits improved growth performance when fed throughout the entire nursery period while improved G:F in growing-finishing pigs was observed in one experiment, but not in the other.

15.
Transl Anim Sci ; 8: txae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375403

RESUMO

Three experiments evaluated omega-3 fatty acids, provided by O3 trial feed, on nursery pig growth performance, mortality, and response to an LPS immune challenge or natural Porcine reproductive and respiratory virus (PRRSV) outbreak. In experiment 1, 350 pigs (241 × 600, DNA; initially 5.8 kg) were used. Pens of pigs were randomly assigned to one of the five dietary treatments containing increasing omega-3 fatty acids (0%, 1%, 2%, 3%, and 4% O3 trial feed) with 14 replications per treatment. On day 25, two pigs per pen were injected intramuscularly with 20 µg Escherichia coli LPS per kg BW and one pig per pen was injected with saline as a control. Body temperature was taken from all three pigs prior to and 2, 4, 6, and 12 h post-LPS challenge. Serum IL-1ß and TNF-α concentrations were determined in LPS-challenged pigs 24 h prior and 4 h post-LPS challenge. There was no interaction between treatment and time for change in body temperature (P > 0.10). Overall, increasing the O3 trial feed did not affect (P > 0.10) ADG, ADFI, G:F, IL-1ß, or TNF-α. In experiment 2, 1,056 pigs (PIC TR4 × [Fast LW × PIC L02] initially 7.3 kg) were used. Pens of pigs were randomly assigned to one of the four dietary treatments containing increasing omega-3 fatty acids (0%, 0.75%, 1.5%, and 3% O3 trial feed) with 12 replications per treatment. Oral fluids tested negative on days 7 and 14, but then positive for North American PRRSV virus via PCR on days 21, 28, 35, and 42. Overall, increasing O3 trial feed increased (linear, P < 0.001) ADG, ADFI, and G:F and decreased (linear, P = 0.027) total removals and mortality. In experiment 3, 91,140 pigs (DNA 600 × PIC 1050; initially 5.1 kg), originating from PRRSV-positive sow farms, were used across eight nursery sites. Each site contained five barns with two rooms per barn and ~1,100 pigs per room. Rooms of pigs were blocked by nursery site and allocated within sow source to one of the two dietary treatments (control or 3% O3 trial feed) with 40 replications per treatment. Oral fluids from 61 of the 80 rooms tested positive for North American PRRSV virus 1 wk postweaning and 78 of the 80 rooms tested positive 3 wk after weaning. Overall, O3 trial feed did not affect ADG, ADFI, or G:F but increased (P < 0.001) total removals and mortalities. In summary, increasing omega-3 fatty acids, sourced by O3 trial feed, did not improve growth performance or immune response in healthy pigs given an LPS challenge. However, it appears that if omega-3 fatty acids are fed prior to a natural PRRSV break (as in experiment 2), growth performance may be improved, and mortality reduced.

16.
Transl Anim Sci ; 8: txae085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827160

RESUMO

Two studies were conducted to evaluate the effects of sodium diformate in swine diets. For Exp. 1, 360 barrows (DNA 200 × 400; initially 5.9 ±â€…0.06 kg) were used in a 38-d study. At weaning, pigs were randomly assigned to pens with five pigs per pen. Each pen was allocated to one of six treatments with 12 pens per treatment. Treatments were formulated to provide none, 0.40%, 0.60%, 0.80%, 1.00%, or 1.20% sodium diformate added at the expense of corn. Diets were fed in three phases: phase 1 from weaning to day 9, phase 2 from days 9 to 24, and phase 3 from days 24 to 38. From days 0 to 24 (phases 1 and 2), increasing sodium diformate increased (linear, P = 0.001) gain-to-feed (G:F). However, sodium diformate did not affect average daily gain (ADG) or average daily feed intake (ADFI). From days 24 to 38 (phase 3) and overall (days 0 to 38), there was no evidence of differences due to increasing sodium diformate for any growth response criteria. There was no evidence for differences in fecal dry matter (DM) on day 9. However, fecal DM decreased (linear, P < 0.05; quadratic, P = 0.097) as sodium diformate increased on day 24. In Exp. 2, 2,200 pigs (Duroc sire [PIC 800 or DNA 600] × PIC Camborough; initially 24.2 ±â€…0.30 kg) were used in a 117-d growth trial. Pens of pigs (25 pigs per pen) were randomly assigned to one of four treatments with 22 pens per treatment. Treatments were formulated with additions of none, 0.25%, 0.50%, or 0.75% sodium diformate. Diets were fed in six phases from 24 to 141 kg. For period 1 (days 0 to 32), ADFI tended to decrease then increase (quadratic, P = 0.081) with increasing sodium diformate, whereas G:F increased then decreased (quadratic, P < 0.001) with increasing sodium diformate. For period 2 (days 32 to 60), there was no evidence for differences in ADG or ADFI; however, there was a tendency for G:F to increase then decrease (quadratic, P = 0.093) with increasing sodium diformate. From days 60 to 93, increasing sodium diformate increased (linear, P < 0.01) ADG and ADFI. From days 93 to 117, increasing sodium diformate increased (linear, P < 0.05) ADG, ADFI, and G:F. Overall (days 0 to 117), pigs fed increasing sodium diformate had increased (linear, P < 0.01) ADG and a tendency for increased (linear, P = 0.075) ADFI; however, there was no evidence for differences in G:F. There were no treatment differences for any carcass characteristic. In summary, increasing sodium diformate may increase G:F in the early nursery and improve ADG after day 60 (approximately 82 kg) in the finishing period.

17.
Transl Anim Sci ; 8: txae099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979115

RESUMO

Ionophores are feed additives that decrease gram-positive microbial populations by disrupting the ion transfer across cell membranes resulting in improved growth performance. Narasin (Skycis; Elanco Animal Health, Greenfield, IN) is an FDA-approved ionophore utilized for increased rate of weight gain and improved feed efficiency in growing-finishing pigs. A meta-regression analysis was conducted to evaluate the effects of added narasin in growing-finishing pig diets to predict its influence on average daily gain (ADG), feed efficiency (G:F), and carcass yield. A database was developed containing 21 technical reports, abstracts, and refereed papers from 2012 to 2021 representing 35 observations for growth performance data in studies ranging from 35 to 116 d in length (overall data). In addition, within these 35 observations, individual period data were evaluated (143 observations) using weekly, bi-weekly, or monthly performance intervals (period data). Regression model equations were developed, and predictor variables were assessed with a stepwise manual forward selection procedure. The ADG model using the overall data included ADG, ADFI, and G:F of the control group, added narasin dose, and narasin feeding duration categorized as longer or shorter than 65 d. Predictor variables included in the G:F model using overall data were ADG, ADFI, and G:F of the control group and added narasin dose. For carcass yield, the final model included ADFI and G:F of the control group, added narasin dose, and narasin feeding duration of longer than 65 d. In the period model for ADG, the predictors included ADG, ADFI, and G:F of the control group, added narasin dose, and average BW of the control group categorized into greater than or less than 105 kg. For period data for G:F, the model selected ADG, ADFI, and G:F of the control group and added narasin dose. Based on the results, the overall response to added narasin for ADG and G:F was quadratic and tended to decrease as ADG and G:F increased. A similar quadratic response was observed for the individual period data. In summary, using median values from the database for predictor variables, this meta-analysis demonstrated narasin would be expected to improve ADG between 1.06% and 1.65%, G:F between 0.71% and 1.71%, and carcass yield by 0.31% when fed continuously for longer than 65 d.

18.
Transl Anim Sci ; 8: txad140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38221959

RESUMO

A total of 280 pigs (DNA 241 × 600, initially 10.4 ±â€…0.24 kg) were used in a 21-d study to determine the available P (aP) release curve for Sunphase HT phytase (Wuhan Sunhy Biology Co., Ltd., Wuhan, P.R. China) when fed diets with a high phytate concentration. On day 21 post-weaning, considered day 0 of the study, pigs were blocked by average pen body weight (BW) and randomly allotted to 1 of 7 dietary treatments with 5 pigs per pen and 8 pens per treatment. Dietary treatments were derived from a single basal diet, and ingredients including phytase, monocalcium P, limestone, and sand were added to create the treatment diets. Treatments included three diets with increasing (0.11%, 0.19%, and 0.27%) aP from monocalcium P, or four diets with increasing phytase (250, 500, 1,000, or 2,000 phytase unit (FTU)/kg) added to the diet formulated to 0.11% aP. All diets were corn-soybean meal-canola meal-based and were formulated to contain 1.24% SID Lys, a 1.10:1 total calcium-to-phosphorus ratio, and a calculated 0.32% phytate P. Prior to the beginning of the study, all pigs were fed a diet containing 0.11% aP from days 18 to 21 post-weaning. At the conclusion of the study, 1 pig, closest to the mean weight of each pen, was euthanized, and the right fibula, 10th rib, and metacarpal were collected to determine bone ash and density. After cleaning, bones were submerged in ultra-purified water under a vacuum for 4 h and then weighed to calculate the density (Archimedes principle). For bone ash, bones were processed using the non-defatted method. From days 0 to 21, increasing aP from monocalcium P increased (linear, P ≤ 0.014) average daily gain (ADG), gain-to-feed (G:F), and final BW. Pigs fed increasing phytase had increased (linear, P ≤ 0.045) ADG, final BW, and plasma inositol concentration as well as improved (quadratic, P = 0.023) G:F. For bone characteristics, pigs fed increasing aP from inorganic P had a linear improvement (P ≤ 0.019) in fibula bone ash weight and percentage bone ash, rib bone ash weight and bone density, and all metacarpal bone properties, with a quadratic response (P ≤ 0.030) for fibula bone density and rib percentage ash. Additionally, pigs fed increasing phytase had increased (P < 0.05) bone ash weight, percentage bone ash, and bone density in either a linear or quadratic fashion depending on the bone analyzed. The available P release curve generated for Sunphase HT phytase for percentage bone ash combining values from the right fibula, 10th rib, and metacarpal is aP release, % = (0.360 × FTU) ÷ (2,330.250 + FTU).

19.
Front Vet Sci ; 11: 1425928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091398

RESUMO

African swine fever (ASF) is a highly contagious diseases in domestic pigs and wild boars with up to 100% mortality. ASF virus (ASFV) is a causative agent responsible for ASF and highly resistant in environments, which creates a significant challenge for the control and eradication of the virus. Despite the geographical expansion of ASFV and international movement of products to sustain the swine production system, there is limited knowledge on the use of environmental samples to perform surveillance to prevent the introduction of ASFV into ASFV-free areas and for control of transmission in affected areas. Therefore, this study aimed to develop and optimize sampling techniques for environmental samples for ASFV detection. The stainless steel surfaces were contaminated with ASFV-infected blood, swabbed using different devices, and then processed through different techniques. The environmental samples were processed and tested using qPCR analysis. The results showed that the use of pre-moistened gauze surgical sponges, sweeping pads, and sponge sticks resulted in increased sensitivity, when compared to either dry sampling devices or Dacron swab. In particular, the combination of the sponge stick and the commercial nucleic acid preservative supported the best detection of ASFV DNA on the clean stainless steel surfaces evaluated. Pre-incubation for the short period of time and centrifugation at low speed were sufficient to provide satisfactory diagnostic sensitivity of ASFV detection using qPCR for environmental samples. Our findings contribute to the development of techniques for environmental samples for ASFV surveillance to prevent the introduction and dissemination of ASFV.

20.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38855930

RESUMO

A total of 882 pigs (PIC TR4 × [Fast LW × PIC L02]; initially 33.2 ±â€…0.31 kg) were used in a 112-d study to evaluate the effects of different bones and analytical methods on the assessment of bone mineralization response to changes in dietary P, phytase, and vitamin D in growing pigs. Pens of pigs (20 pigs per pen) were randomized to one of five dietary treatments with nine pens per treatment. Dietary treatments were designed to create differences in bone mineralization and included: 1) P at 80% of NRC (2012) standardized total tract digestible (STTD) P requirement, 2) NRC STTD P with no phytase, 3) NRC STTD P with phytase providing an assumed release of 0.14% STTD P from 2,000 FYT/kg, 4) high STTD P (128% of the NRC P) using monocalcium phosphate and phytase, and 5) diet 4 with additional vitamin D3 from 25(OH)D3. On day 112, one pig per pen was euthanized for bone, blood, and urine analysis. Additionally, 11 pigs identified as having poor body condition which indicated a history of low feed intake (unhealthy) were sampled. There were no differences between treatments for final body weight, average daily gain, average daily feed intake, gain to feed, or bone ash measurements (treatment × bone interaction) regardless of bone ash method. The response to treatment for bone density and bone mineral content was dependent upon the bone sampled (density interaction, P = 0.053; mineral interaction, P = 0.078). For 10th rib bone density, pigs fed high levels of P had increased (P < 0.05) bone density compared with pigs fed NRC levels with phytase, with pigs fed deficient P, NRC levels of P with no phytase, and high STTD P with extra 25(OH)D3 intermediate, with no differences for metacarpals, fibulas, or 2nd ribs. Pigs fed extra vitamin D from 25(OH)D3 had increased (P < 0.05) 10th rib bone mineral content compared with pigs fed deficient P and NRC levels of P with phytase, with pigs fed industry P and vitamin D, and NRC P with monocalcium intermediate. Healthy pigs had greater (P < 0.05) serum Ca, P, vitamin D concentrations, and defatted bone ash than those unhealthy, with no difference between the two health statuses for non-defatted bone ash. In summary, differences between bone ash procedures were more apparent than differences between diets. Differences in bone density and mineral content in response to dietary P and vitamin D were most apparent with 10th ribs.


Lameness is defined as impaired movement or deviation from normal gait. The evaluation of bone mineralization can be an important component of a diagnostic investigation of lameness. Lameness in growing pigs can cause an increase in morbidity and mortality, which leads to economic losses and animal welfare concerns for producers. Calcium and P are the primary minerals in skeletal tissue and their deficiency is considered to be one of the causes of lameness. To evaluate bone mineralization, it is important to know the differences between methodologies used to determine bone ash and the expected differences between the bones analyzed. Furthermore, there has been limited data comparing bone mineralization and serum Ca and P concentrations between healthy pigs and those exhibiting clinical signs of illness (unhealthy). By removing the lipid in the bone (defatting) before the bone is ashed, variation across bones is decreased compared with not removing lipid before ashing (non-defatted). The reduction in variation across bones allows for more differences to be detected among dietary treatments and health statuses of pigs. The 10th rib is more sensitive to detect dietary differences using bone density than metacarpals, fibulas, and 2nd ribs. When comparing healthy vs. unhealthy pigs exhibiting clinical signs of illness, healthy pigs have increased defatted percentage bone ash and serum Ca, P, and vitamin D.


Assuntos
6-Fitase , Ração Animal , Calcificação Fisiológica , Dieta , Fósforo na Dieta , Vitamina D , Animais , 6-Fitase/administração & dosagem , 6-Fitase/farmacologia , 6-Fitase/metabolismo , Ração Animal/análise , Dieta/veterinária , Suínos/fisiologia , Suínos/crescimento & desenvolvimento , Calcificação Fisiológica/efeitos dos fármacos , Vitamina D/administração & dosagem , Vitamina D/sangue , Fósforo na Dieta/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Animal , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Feminino , Suplementos Nutricionais/análise , Densidade Óssea/efeitos dos fármacos , Fósforo/metabolismo , Fósforo/sangue , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA