Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(43): e2408583121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39401366

RESUMO

Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species Populus fremontii were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 °C. When water was not limiting, all genotypes cooled leaves 2 to 5 °C below air temperatures. Homeothermic cooling was disrupted for weeks following a 72-h reduction in soil water, resulting in leaf temperatures rising 3 °C above air temperature and 1.3 °C above leaf thresholds for physiological damage, despite the water stress having little effect on leaf water potentials. Tradeoffs between leaf thermal safety and hydraulic safety emerged but, regardless of water use strategy, all genotypes experienced significant leaf mortality following water stress. Genotypes from warmer climates showed greater leaf cooling and less leaf mortality after water stress in comparison with genotypes from cooler climates. These results illustrate how brief soil water limitation disrupts leaf thermal regulation and potentially compromises plant survival during extreme heatwaves, thus providing insight into future scenarios in which ecosystems will be challenged with extreme heat and unreliable soil water access.


Assuntos
Folhas de Planta , Populus , Árvores , Água , Folhas de Planta/fisiologia , Populus/fisiologia , Populus/genética , Árvores/fisiologia , Árvores/genética , Solo , Genótipo , Calor Extremo , Temperatura Alta , Ecossistema
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400503

RESUMO

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , Florestas
3.
New Phytol ; 240(6): 2298-2311, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37680030

RESUMO

Populus fremontii is among the most dominant, and ecologically important riparian tree species in the western United States and can thrive in hyper-arid riparian corridors. Yet, P. fremontii forests have rapidly declined over the last decade, particularly in places where temperatures sometimes exceed 50°C. We evaluated high temperature tolerance of leaf metabolism, leaf thermoregulation, and leaf hydraulic function in eight P. fremontii populations spanning a 5.3°C mean annual temperature gradient in a well-watered common garden, and at source locations throughout the lower Colorado River Basin. Two major results emerged. First, despite having an exceptionally high Tcrit (the temperature at which Photosystem II is disrupted) relative to other tree taxa, recent heat waves exceeded Tcrit , requiring evaporative leaf cooling to maintain leaf-to-air thermal safety margins. Second, in midsummer, genotypes from the warmest locations maintained lower midday leaf temperatures, a higher midday stomatal conductance, and maintained turgor pressure at lower water potentials than genotypes from more temperate locations. Taken together, results suggest that under well-watered conditions, P. fremontii can regulate leaf temperature below Tcrit along the warm edge of its distribution. Nevertheless, reduced Colorado River flows threaten to lower water tables below levels needed for evaporative cooling during episodic heat waves.


Assuntos
Populus , Árvores , Árvores/fisiologia , Populus/fisiologia , Folhas de Planta/fisiologia , Sudoeste dos Estados Unidos , Temperatura
4.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460530

RESUMO

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , Sementes
5.
Mol Ecol ; 31(19): 5024-5040, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947510

RESUMO

Selection on quantitative traits by heterogeneous climatic conditions can lead to substantial trait variation across a species range. In the context of rapidly changing environments, however, it is equally important to understand selection on trait plasticity. To evaluate the role of selection in driving divergences in traits and their associated plasticities within a widespread species, we compared molecular and quantitative trait variation in Populus fremontii (Fremont cottonwood), a foundation riparian distributed throughout Arizona. Using SNP data and genotypes from 16 populations reciprocally planted in three common gardens, we first performed QST -FST analyses to detect selection on traits and trait plasticity. We then explored the environmental drivers of selection using trait-climate and plasticity-climate regressions. Three major findings emerged: (1) There was significant genetic variation in traits expressed in each of the common gardens and in the phenotypic plasticity of traits across gardens, both of which were heritable. (2) Based on QST -FST comparisons, there was evidence of selection in all traits measured; however, this result varied from no effect in one garden to highly significant in another, indicating that detection of past selection is environmentally dependent. We also found strong evidence of divergent selection on plasticity across environments for two traits. (3) Traits and/or their plasticity were often correlated with population source climate (R2 up to .77 and .66, respectively). These results suggest that steep climate gradients across the Southwest have played a major role in shaping the evolution of divergent phenotypic responses in populations and genotypes now experiencing climate change.


Assuntos
Populus , Árvores , Genótipo , Fenótipo , Populus/genética , Seleção Genética , Árvores/genética
6.
Plant Cell Environ ; 45(6): 1664-1681, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35147232

RESUMO

Leaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution. We measured leaf temperatures and assessed three modes of leaf thermoregulation: leaf morphology, midday canopy stomatal conductance and stomatal sensitivity to vapour pressure deficit. Data were used to parameterize a leaf energy balance model to estimate contrasts in midday leaf temperature in warm- and cool-adapted genotypes. Warm-adapted genotypes had 39% smaller leaves and 38% higher midday stomatal conductance, reflecting a 3.8°C cooler mean leaf temperature than cool-adapted genotypes. Leaf temperatures modelled over the warmest months were on average 1.1°C cooler in warm- relative to cool-adapted genotypes. Results show that plants adapted to warm environments are predisposed to tightly regulate leaf temperatures during heat waves, potentially at an increased risk of hydraulic failure.


Assuntos
Populus , Árvores , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Populus/genética , Árvores/fisiologia , Pressão de Vapor , Água
7.
Oecologia ; 199(4): 1007-1019, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35969273

RESUMO

Displacement of diverse native plant communities by low-diversity invasive communities is a global problem. In the western United States, the displacement of sagebrush-dominated communities by cheatgrass has increased since the 1920s. Restoration outcomes are poor, potentially due to soil alteration by cheatgrass. We explored the poorly understood role of plant-soil feedbacks in the dominance of cheatgrass in a greenhouse study where uninvaded sagebrush soils were conditioned with either cheatgrass, a native bunchgrass or sagebrush. Sagebrush seedlings were grown in the soils that remained following the removal of conditioning plants. We expected cheatgrass to strongly suppress sagebrush due to a change in belowground microbial communities, conspecifics to have neutral effects and the native bunchgrass to have intermediate effects as it coevolved with sagebrush but belongs to a different functional group. We assessed the effects of conditioning on sagebrush growth, tissue nutrients, and carbon allocation. We also characterized the abundance, diversity and community composition of root microbial associates. Cheatgrass strongly suppressed sagebrush growth at high and low conditioning densities, the native bunchgrass showed suppression at high conditioning densities only and conspecific effects were neutral. Tissue nutrients, amount of root colonization by soil fungi or root microbial community composition were not associated with these plant-soil feedbacks. Although we did not identify the precise mechanism, our results provide key evidence that rapid soil alteration by cheatgrass results in negative plant-soil feedbacks on sagebrush growth. These feedbacks likely contribute to cheatgrass dominance and the poor success of sagebrush restoration.


Assuntos
Artemisia , Solo , Bromus , Retroalimentação , Poaceae
8.
Proc Natl Acad Sci U S A ; 114(42): 11169-11174, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973879

RESUMO

Plant genetic variation and soil microorganisms are individually known to influence plant responses to climate change, but the interactive effects of these two factors are largely unknown. Using long-term observational studies in the field and common garden and greenhouse experiments of a foundation tree species (Pinus edulis) and its mutualistic ectomycorrhizal fungal (EMF) associates, we show that EMF community composition is under strong plant genetic control. Seedlings acquire the EMF community of their seed source trees (drought tolerant vs. drought intolerant), even when exposed to inoculum from the alternate tree type. Drought-tolerant trees had 25% higher growth and a third the mortality of drought-intolerant trees over the course of 10 y of drought in the wild, traits that were also observed in their seedlings in a common garden. Inoculation experiments show that EMF communities are critical to drought tolerance. Drought-tolerant and drought-intolerant seedlings grew similarly when provided sterile EMF inoculum, but drought-tolerant seedlings grew 25% larger than drought-intolerant seedlings under dry conditions when each seedling type developed its distinct EMF community. This demonstration that particular combinations of plant genotype and mutualistic EMF communities improve the survival and growth of trees with drought is especially important, given the vulnerability of forests around the world to the warming and drying conditions predicted for the future.


Assuntos
Aclimatação , Secas , Micorrizas , Pinus/genética , Mudança Climática , Pinus/microbiologia , Simbiose
9.
New Phytol ; 224(1): 155-165, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209891

RESUMO

Successive droughts have resulted in extensive tree mortality in the southwestern United States. Recovery of these areas is dependent on the survival and recruitment of young trees. For trees that rely on ectomycorrhizal fungi (EMF) for survival and growth, changes in soil fungal communities following tree mortality could negatively affect seedling establishment. We used tree-focused and stand-scale measurements to examine the impact of pinyon pine mortality on the performance of surviving juvenile trees and the potential for mutualism limitation of seedling establishment via altered EMF communities. Mature pinyon mortality did not affect the survival of juvenile pinyons, but increased their growth. At both tree and stand scales, high pinyon mortality had no effect on the abundance of EMF inocula, but led to altered EMF community composition including increased abundance of Geopora and reduced abundance of Tuber. Seedling biomass was strongly positively associated with Tuber abundance, suggesting that reductions in this genus with pinyon mortality could have negative consequences for establishing seedlings. These findings suggest that whereas mature pinyon mortality led to competitive release for established juvenile pinyons, changes in EMF community composition with mortality could limit successful seedling establishment and growth in high-mortality sites.


Assuntos
Micorrizas/fisiologia , Pinus/microbiologia , Árvores/microbiologia , Biomassa , Microclima , Caules de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
10.
Mycorrhiza ; 28(2): 197-201, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29290018

RESUMO

This report reviews important advances in mycorrhizal research that occurred during the past 2 years. We highlight major advancements both within and across levels of biological organization and describe areas where greater integration has led to unique insights. Particularly active areas of research include exploration of the mechanisms underpinning the development of the mycorrhizal symbiosis, the mycorrhizal microbiome, comparisons among types of mycorrhizas from molecular to ecosystem scales, the extent and function of mycorrhizal networks and enhanced understanding of the role of mycorrhizas in carbon dynamics from local to global scales. The top-tier scientific journals have acknowledged mycorrhizas to be complex adaptive systems that play key roles in the development of communities and ecosystem processes. Understanding the mechanisms driving these large-scale effects requires integration of knowledge across scales of biological organization.


Assuntos
Ciclo do Carbono , Microbiota , Micorrizas/fisiologia , Simbiose , Ecossistema , Micorrizas/genética
11.
Mycorrhiza ; 27(3): 211-223, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27838856

RESUMO

Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.


Assuntos
Eucalyptus/metabolismo , Micorrizas/fisiologia , Quercus/metabolismo , Plântula/crescimento & desenvolvimento , Biodiversidade , Eucalyptus/efeitos dos fármacos , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/microbiologia , Interações Hospedeiro-Patógeno , Micorrizas/classificação , Nitrogênio/farmacologia , Fósforo/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Quercus/efeitos dos fármacos , Quercus/crescimento & desenvolvimento , Quercus/microbiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/microbiologia , Solo/química , Especificidade da Espécie , Simbiose , Distribuição Tecidual
12.
Ecology ; 96(7): 1974-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26378319

RESUMO

Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.


Assuntos
Artrópodes/genética , Fungos/genética , Variação Genética , Herbivoria/genética , Doenças das Plantas/microbiologia , Populus/genética , Animais , Artrópodes/fisiologia , Cadeia Alimentar , Fungos/fisiologia , Herbivoria/fisiologia , Populus/fisiologia
13.
Am J Bot ; 101(3): 467-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24634436

RESUMO

PREMISE OF THE STUDY: Fungal endophytes asymptomatically inhabit plant tissues where they have mutualistic, parasitic, or commensal relationships with their hosts. Although plant-fungal interactions at the genotype scale have broad ecological and evolutionary implications, the sensitivity of endophytes in woody tissues to differences among plant genotypes is poorly understood. We hypothesize that (1) endophyte communities in Populus angustifolia (Salicaceae) twigs vary among tree genotypes, (2) endophyte variation is linked to quantitative tree traits, and (3) tree genotype influences interspecific fungal interactions. METHODS: Endophytes were isolated from twigs of replicated P. angustifolia genotypes in a common garden and characterized with PCR-RFLP and DNA sequencing. Twig length and diameter, aboveground tree biomass, and condensed tannins were also quantified. KEY RESULTS: (1) Aspects of fungal community structure, including composition and total isolation frequency (i.e., abundance), varied among genotypes. (2) Aboveground biomass and twig diameter were positively associated with isolation frequency and covaried with composition, whereas twig length and condensed tannin concentration were not significantly correlated to endophytes. (3) Fungal co-occurrence patterns suggested negative species interactions, but the presence of significant co-occurrences was genotype dependent. CONCLUSIONS: The species is often assumed to be the most important ecological unit; however, these results indicate that genetically based trait variation within a species can influence an important community of associated organisms. Given the dominance of plants as primary producers and the ubiquity of endophytes, the effect of host genetic variation on endophytes has fundamental implications for our understanding of terrestrial ecosystems.


Assuntos
Endófitos/genética , Variação Genética , Brotos de Planta/microbiologia , Populus/microbiologia , Sequência de Bases , Biomassa , DNA Fúngico/química , DNA Fúngico/genética , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fungos/genética , Fungos/isolamento & purificação , Fungos/fisiologia , Genótipo , Dados de Sequência Molecular , Fenótipo , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Populus/química , Populus/crescimento & desenvolvimento , Proantocianidinas/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose , Árvores
14.
Oecologia ; 176(3): 799-810, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205028

RESUMO

The effects of plant genetics on predators, especially those not living on the plant itself, are rarely studied and poorly understood. Therefore, we investigated the effect of plant hybridization and genotype on litter-dwelling spiders. Using an 18-year-old cottonwood common garden, we recorded agelenid sheet-web density associated with the litter layers of replicated genotypes of three tree cross types: Populus fremontii, Populus angustifolia, and their F1 hybrids. We surveyed 118 trees for agelenid litter webs at two distances from the trees (0-100 and 100-200 cm from trunk) and measured litter depth as a potential mechanism of web density patterns. Five major results emerged: web density within a 1-m radius of P. angustifolia was approximately three times higher than within a 1-m radius of P. fremontii, with F1 hybrids having intermediate densities; web density responded to P. angustifolia and F1 hybrid genotypes as indicated by a significant genotype × distance interaction, with some genotypes exhibiting a strong decline in web density with distance, while others did not; P. angustifolia litter layers were deeper than those of P. fremontii at both distance classes, and litter depth among P. angustifolia genotypes differed up to 300%; cross type and genotype influenced web density via their effects on litter depth, and these effects were influenced by distance; web density was more sensitive to the effects of tree cross type than genotype. By influencing generalist predators, plant hybridization and genotype may indirectly impact trophic interactions such as intraguild predation, possibly affecting trophic cascades and ecosystem processes.


Assuntos
Populus/genética , Comportamento Predatório , Aranhas/fisiologia , Animais , Genótipo , Hibridização Genética , Densidade Demográfica , Populus/crescimento & desenvolvimento , Distribuição Aleatória , Especificidade da Espécie , Árvores/genética , Árvores/crescimento & desenvolvimento , Utah
15.
Mycologia ; 106(3): 553-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24871594

RESUMO

Species of the genus Geopora are important ectomycorrhizal associates that can dominate the communities of some plant taxa, such as pinyon pine (Pinus edulis), a widespread tree of the western United States. Several members of the genus Geopora are known only from ectomycorrhizal root tips and thus have not been described formally. The sporocarps of some Geopora species occur infrequently because they depend on wet years for sporulation. In addition, Geopora sporocarps can be small and may be hypogeous at some developmental stage, limiting the opportunities for describing their morphology. Using molecular and morphological data, we have described a new species of fungus, Geopora pinyonensis, which produced ascocarps after unusually high precipitation at a northern Arizona site in summer 2012. Based on analysis of the ITS and nuLSU regions of the rDNA, G pinyonensis is a new species of Geopora. It has small sporocarps and ascospores relative to other members of the genus; however, these morphological features overlap with other species. Using rDNA data from sporocarps and ectomycorrhizal root tips, we show that the sporocarps correspond to an abundant species of ectomycorrhizal fungus associated with pinyon pines that is increasing in abundance in drought-affected landscapes and may promote drought tolerance.


Assuntos
Ascomicetos/isolamento & purificação , Micorrizas/isolamento & purificação , Pinus/microbiologia , Arizona , Ascomicetos/classificação , Ascomicetos/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Filogenia
16.
Mol Ecol ; 22(9): 2573-87, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23458035

RESUMO

Arbuscular mycorrhizal (AM) fungi are widespread root symbionts that often improve the fitness of their plant hosts. We tested whether local adaptation in mycorrhizal symbioses would shape the community structure of these root symbionts in a way that maximizes their symbiotic functioning. We grew a native prairie grass (Andropogon gerardii) with all possible combinations of soils and AM fungal inocula from three different prairies that varied in soil characteristics and disturbance history (two native prairie remnants and one recently restored). We identified the AM fungi colonizing A. gerardii roots using PCR amplification and cloning of the small subunit rRNA gene. We observed 13 operational taxonomic units (OTUs) belonging to six genera in three families. Taxonomic richness was higher in the restored than the native prairies with one member of the Gigaspora dominating the roots of plants grown with inocula from native prairies. Inoculum source and the soil environment influenced the composition of AM fungi that colonized plant roots. Correspondingly, host plants and AM fungi responded significantly to the soil-inoculum combinations such that home fungi often had the highest fitness and provided the greatest benefit to A. gerardii. Similar patterns were observed within the soil-inoculum combinations originating from two native prairies, where five sequence types of a single Gigaspora OTU were virtually the only root colonizers. Our results indicate that indigenous assemblages of AM fungi were adapted to the local soil environment and that this process occurred both at a community scale and at the scale of fungal sequence types within a dominant OTU.


Assuntos
Adaptação Fisiológica/genética , Glomeromycota/isolamento & purificação , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Microbiologia do Solo , Clonagem Molecular , Variação Genética , Glomeromycota/classificação , Glomeromycota/genética , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Micorrizas/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Simbiose
17.
Am J Bot ; 100(3): 602-12, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23445824

RESUMO

PREMISE OF THE STUDY: Even though dioecy is a dominant sexual system among gymnosperms, little is known about its evolutionary history. Pinus johannis may represent a model system because unisexual and monoecious individuals compose its populations. The presence of unisexual individuals in other Pinus species is a consequence of sexual lability. Here we determined whether P. johannis represents the first example of a dioecious or nearly dioecious reproductive system in conifers by evaluating its sexual stability. • METHODS: To assess the stability of sexual expression, we quantified the proportion of male vs. female reproductive structures produced by trees over multiple years and tested for the presence of sexual dimorphism. Sexual lability hypotheses were also examined by looking at the relationship between environmental factors and sexual expression and by comparing the reproductive behavior of P. johannis with its closest labile relative, P. edulis. • KEY RESULTS: Pinus johannis is nearly dioecious: ~99% of individuals are unisexual or express a low proportion of the opposite gender with few changes in sexual expression through time. We found sexual dimorphism consistent with sexual stability. Sexual expression did not vary with tree size/age, abiotic environment, or herbivore removal, providing evidence against sexual lability. Individuals of P. johannis tended to produce only male or female strobili, whereas those of P. edulis were mainly monoecious with a gradient in the female to male strobili ratio. • CONCLUSIONS: This study represents the first report of a nearly stable dioecious Pinus species. The variety of sexual morphs coexisting in the same population makes P. johannis a model for studying the evolution of dioecy in gymnosperms.


Assuntos
Pinus/fisiologia , Biomassa , Herbivoria/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Reprodução/fisiologia , Fatores de Tempo , Árvores/fisiologia
18.
Sci Rep ; 13(1): 14424, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660169

RESUMO

Rhizosphere microbes, such as root-associated fungi, can improve plant access to soil resources, affecting plant health, productivity, and stress tolerance. While mycorrhizal associations are ubiquitous, plant-microbe interactions can be species specific. Here we show that the specificity of the effects of microbial symbionts on plant function can go beyond species level: colonization of roots by ectomycorrhizal fungi (EMF) of the genus Geopora has opposite effects on water uptake, and stomatal control of desiccation in drought tolerant and intolerant genotypes of pinyon pine (Pinus edulis Engelm.). These results demonstrate, for the first time, that microorganisms can have significant and opposite effects on important plant functional traits like stomatal control of desiccation that are associated with differential mortality and growth in nature. They also highlight that appropriate pairing of plant genotypes and microbial associates will be important for mitigating climate change impacts on vegetation.


Assuntos
Micorrizas , Pinus , Micorrizas/genética , Genótipo , Fenótipo , Transporte Biológico
19.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386149

RESUMO

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Assuntos
Reprodução , Árvores , Fertilidade , Sementes , Saciação
20.
BMC Microbiol ; 12: 255, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23136846

RESUMO

BACKGROUND: Fungal load quantification is a critical component of fungal community analyses. Limitation of current approaches for quantifying the fungal component in the human microbiome suggests the need for new broad-coverage techniques. METHODS: We analyzed 2,085 18S rRNA gene sequences from the SILVA database for assay design. We generated and quantified plasmid standards using a qPCR-based approach. We evaluated assay coverage against 4,968 sequences and performed assay validation following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. RESULTS: We designed FungiQuant, a TaqMan® qPCR assay targeting a 351 bp region in the fungal 18S rRNA gene. Our in silico analysis showed that FungiQuant is a perfect sequence match to 90.0% of the 2,617 fungal species analyzed. We showed that FungiQuant's is 100% sensitive and its amplification efficiencies ranged from 76.3% to 114.5%, with r(2)-values of >0.99 against the 69 fungal species tested. Additionally, FungiQuant inter- and intra-run coefficients of variance ranged from <10% and <20%, respectively. We further showed that FungiQuant has a limit of quantification 25 copies and a limit of detection at 5 copies. Lastly, by comparing results from human-only background DNA with low-level fungal DNA, we showed that amplification in two or three of a FungiQuant performed in triplicate is statistically significant for true positive fungal detection. CONCLUSIONS: FungiQuant has comprehensive coverage against diverse fungi and is a robust quantification and detection tool for delineating between true fungal detection and non-target human DNA.


Assuntos
Contagem de Colônia Microbiana/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Fungos/isolamento & purificação , Genes de RNAr , Humanos , Metagenoma , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA