Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(33): 21417-21429, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30066705

RESUMO

Measurements of the open circuit voltage of Li-ion cells have been extensively used as a non-destructive characterisation tool. Another technique based on entropy change measurements has also been applied for this purpose. More recently, both techniques have been used to make qualitative statements about aging in Li-ion cells. One proposed cause of cell failure is point defect formation in the electrode materials. The steps in voltage profiles, and the peaks in entropy profiles are sensitive to order/disorder transitions arising from Li/vacancy configurations, which are affected by the host lattice structures. We compare the entropy change results, voltage profiles and incremental capacity (dQ/dV) obtained from coin cells with spinel lithium manganese oxide (LMO) cathodes, Li1+yMn2-yO4, where excess Li y was added in the range 0 ≤ y ≤ 0.2. A clear trend of entropy and dQ/dV peak amplitude decrease with excess Li amount was determined. The effect arises, in part, from the presence of pinned Li sites, which disturb the formation of the ordered phase. We modelled the voltage, dQ/dV and entropy results as a function of the interaction parameters and the excess Li amount, using a mean field approach. For a given pinning population, we demonstrated that the asymmetries observed in the dQ/dV peaks can be modelled by a single linear correction term. To replicate the observed peak separations, widths and magnitudes, we had to account for variation in the energy interaction parameters as a function of the excess Li amount, y. All Li-Li repulsion parameters in the model increased in value as the defect fraction, y, increased. Our paper shows how far a computational mean field approximation can replicate experimentally observed voltage, incremental capacity and entropy profiles in the presence of phase transitions.

2.
Sci Rep ; 8(1): 1386, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362384

RESUMO

Silicon-Few Layer Graphene (Si-FLG) composite electrodes are investigated using a scalable electrode manufacturing method. A comprehensive study on the electrochemical performance and the impedance response is measured using electrochemical impedance spectroscopy. The study demonstrates that the incorporation of few-layer graphene (FLG) results in significant improvement in terms of cyclability, electrode resistance and diffusion properties. Additionally, the diffusion impedance responses that occur during the phase changes in silicon is elucidated through Staircase Potentio Electrochemical Impedance Spectroscopy (SPEIS): a more comprehensive and straightforward approach than previous state-of-charge based diffusion studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA