Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(D1): D1181-D1189, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29165610

RESUMO

Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversity; and pathway associations. Gramene's Plant Reactome provides a knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated rice reference pathways to derive pathway projections for an additional 66 species based on gene orthology, and facilitates display of gene expression, gene-gene interactions, and user-defined omics data in the context of these pathways. As a community portal, Gramene integrates best-of-class software and infrastructure components including the Ensembl genome browser, Reactome pathway browser, and Expression Atlas widgets, and undergoes periodic data and software upgrades. Via powerful, intuitive search interfaces, users can easily query across various portals and interactively analyze search results by clicking on diverse features such as genomic context, highly augmented gene trees, gene expression anatomograms, associated pathways, and external informatics resources. All data in Gramene are accessible through both visual and programmatic interfaces.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Bases de Conhecimento , Plantas/genética , Epigênese Genética , Ontologia Genética , Pesquisa em Genética , Variação Genética , Genoma de Planta , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Plantas/metabolismo , Software , Interface Usuário-Computador
2.
Mutat Res ; 775: 10-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25839759

RESUMO

Outside the protection of Earth's atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin's barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.


Assuntos
Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Homeostase/efeitos da radiação , Modelos Biológicos , Radiação Ionizante , Pele/metabolismo , Linhagem Celular , Relação Dose-Resposta à Radiação , Humanos , Pele/patologia
3.
Integr Biol (Camb) ; 5(10): 1229-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23925568

RESUMO

The effects of low dose high linear energy transfer (LET) radiation on human health are of concern for space, occupational, and clinical exposures. As epidemiological data for such radiation exposures are scarce for making relevant predictions, we need to understand the mechanism of response especially in normal tissues. Our objective here is to understand the effects of heavy ion radiation on tissue homeostasis in a realistic model system. Towards this end, we exposed an in vitro three dimensional skin equivalent to low fluences of neon (Ne) ions (300 MeV u(-1)), and determined the differentiation profile as a function of time following exposure using immunohistochemistry. We found that Ne ion exposures resulted in transient increases in the tissue regions expressing the differentiation markers keratin 10, and filaggrin, and more subtle time-dependent effects on the number of basal cells in the epidermis. We analyzed the data using a mathematical model of the skin equivalent, to quantify the effect of radiation on cell proliferation and differentiation. The agent-based mathematical model for the epidermal layer treats the epidermis as a collection of heterogeneous cell types with different proliferation-differentiation properties. We obtained model parameters from the literature where available, and calibrated the unknown parameters to match the observed properties in unirradiated skin. We then used the model to rigorously examine alternate hypotheses regarding the effects of high LET radiation on the tissue. Our analysis indicates that Ne ion exposures induce rapid, but transient, changes in cell division, differentiation and proliferation. We have validated the modeling results by histology and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The integrated approach presented here can be used as a general framework to understand the responses of multicellular systems, and can be adapted to other epithelial tissues.


Assuntos
Íons Pesados , Homeostase/fisiologia , Homeostase/efeitos da radiação , Modelos Biológicos , Fenômenos Fisiológicos da Pele/efeitos da radiação , Pele/citologia , Pele/efeitos da radiação , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Divisão Celular/fisiologia , Divisão Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Simulação por Computador , Relação Dose-Resposta à Radiação , Proteínas Filagrinas , Humanos , Transferência Linear de Energia , Técnicas de Cultura de Órgãos , Doses de Radiação , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA