Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 561(7724): 507-511, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30202091

RESUMO

Multiple optical harmonic generation-the multiplication of photon energy as a result of nonlinear interaction between light and matter-is a key technology in modern electronics and optoelectronics, because it allows the conversion of optical or electronic signals into signals with much higher frequency, and the generation of frequency combs. Owing to the unique electronic band structure of graphene, which features massless Dirac fermions1-3, it has been repeatedly predicted that optical harmonic generation in graphene should be particularly efficient at the technologically important terahertz frequencies4-6. However, these predictions have yet to be confirmed experimentally under technologically relevant operation conditions. Here we report the generation of terahertz harmonics up to the seventh order in single-layer graphene at room temperature and under ambient conditions, driven by terahertz fields of only tens of kilovolts per centimetre, and with field conversion efficiencies in excess of 10-3, 10-4 and 10-5 for the third, fifth and seventh terahertz harmonics, respectively. These conversion efficiencies are remarkably high, given that the electromagnetic interaction occurs in a single atomic layer. The key to such extremely efficient generation of terahertz high harmonics in graphene is the collective thermal response of its background Dirac electrons to the driving terahertz fields. The terahertz harmonics, generated via hot Dirac fermion dynamics, were observed directly in the time domain as electromagnetic field oscillations at these newly synthesized higher frequencies. The effective nonlinear optical coefficients of graphene for the third, fifth and seventh harmonics exceed the respective nonlinear coefficients of typical solids by 7-18 orders of magnitude7-9. Our results provide a direct pathway to highly efficient terahertz frequency synthesis using the present generation of graphene electronics, which operate at much lower fundamental frequencies of only a few hundreds of gigahertz.

2.
J Synchrotron Radiat ; 30(Pt 2): 284-300, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891842

RESUMO

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot by shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, an imaging detector capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst is employed, and allows a photon-shot-noise-limited sensitivity to be approached. The setup and its capabilities are reviewed as well as the online and offline analysis tools provided to users.

3.
J Synchrotron Radiat ; 26(Pt 3): 700-707, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074433

RESUMO

The THz beamline at FLASH, DESY, provides both tunable (1-300 THz) narrow-bandwidth (∼10%) and broad-bandwidth intense (up to 150 uJ) THz pulses delivered in 1 MHz bursts and naturally synchronized with free-electron laser X-ray pulses. Combination of these pulses, along with the auxiliary NIR and VIS ultrashort lasers, supports a plethora of dynamic investigations in physics, material science and biology. The unique features of the FLASH THz pulses and the accelerator source, however, bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles. Here, these challenges are discussed and the pulse diagnostic tools developed at FLASH are presented. In particular, a radiometric power measurement is presented that enables the derivation of the average pulse energy within a pulse burst across the spectral range, jitter-corrected electro-optical sampling for the full spectro-temporal pulse characterization, spatial beam profiling along the beam transport line and at the sample, and a lamellar grating based Fourier transform infrared spectrometer for the on-line assessment of the average THz pulse spectra. Corresponding measurement results provide a comprehensive insight into the THz beamline capabilities.

4.
Phys Rev Lett ; 122(7): 073001, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848607

RESUMO

Time delays for atomic photoemission obtained in streaking or reconstruction of attosecond bursts by interference of two-photon transitions experiments originate from a combination of the quantum mechanical Wigner time and the Coulomb-laser coupling. While the former was investigated intensively theoretically as well as experimentally, the latter attracted less interest in experiments and has mostly been subject to calculations. Here, we present a measurement of the Coulomb-laser coupling-induced time shifts in photoionization of neon at 59.4 eV using a terahertz (THz) streaking field (λ=152 µm). Employing a reaction microscope at the THz beamline of the free-electron laser in Hamburg (FLASH), we have measured relative time shifts of up to 70 fs between the emission of 2p photoelectrons (∼38 eV) and low-energetic (<1 eV) photoelectrons. A comparison with theoretical predictions on Coulomb-laser coupling reveals reasonably good agreement.

5.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827824

RESUMO

Graphene is conceivably the most nonlinear optoelectronic material we know. Its nonlinear optical coefficients in the terahertz frequency range surpass those of other materials by many orders of magnitude. Here, we show that the terahertz nonlinearity of graphene, both for ultrashort single-cycle and quasi-monochromatic multicycle input terahertz signals, can be efficiently controlled using electrical gating, with gating voltages as low as a few volts. For example, optimal electrical gating enhances the power conversion efficiency in terahertz third-harmonic generation in graphene by about two orders of magnitude. Our experimental results are in quantitative agreement with a physical model of the graphene nonlinearity, describing the time-dependent thermodynamic balance maintained within the electronic population of graphene during interaction with ultrafast electric fields. Our results can serve as a basis for straightforward and accurate design of devices and applications for efficient electronic signal processing in graphene at ultrahigh frequencies.

6.
ACS Nano ; 15(1): 1145-1154, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33306364

RESUMO

Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and a small material footprint. Ideally, the material system should allow for chip integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear optical conversion efficiency. Here, we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3 × 10-8 m2/V2, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to a third-harmonic signal with an intensity that is 3 orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to ∼1% using a moderate field strength of ∼30 kV/cm. Finally, we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the ninth harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS-compatible, room-temperature, chip-integrated, THz nonlinear conversion applications.

7.
Anal Bioanal Chem ; 397(6): 2491-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506017

RESUMO

Archaeological bone materials record characteristic markers of life in prehistoric times (dating, climate, environment, diet, human migration) in their isotopic and chemical composition in addition to palaeontological, archaeozoological, anthropological and palaeogenetic information. Thus, the discovery and conservation of archaeological bone materials is of great importance to get access to this information. However, archaeological materials are altered by different postmortem processes and it appears necessary to estimate if the archaeological information is still reliable or if it has been modified during burial. As archaeological bone materials present a high structural hierarchy at the micro- and nanoscale, changes induced by diagenetic phenomena have to be observed at these scales. One method for revealing post mortem changes of the bone structure and composition at the microscale is synchrotron radiation micro-FTIR imaging (SR micro-FTIR). Thus, thin sections of about 5,000-year-old archaeological bones have been analysed in transmission mode at the IRIS beamline (BESSY II, HZB Berlin) to determine markers of the state of bone preservation at the microscale. The archaeological bone material comes from station 19 of the Neolithic site of the Chalain Lake. By using SR micro-FTIR it was possible to image characteristic bone structures, e.g. osteons (the constitutive histological unit of cortical bone), using the absorption band ratios corresponding to different chemical bone constituents (collagen content and quality, phosphate crystallinity, carbonate content). These data allow us to precisely evaluate the state of preservation of a 5,000-year-old bone at the histological level.


Assuntos
Arqueologia/métodos , Osso e Ossos , Imageamento Tridimensional , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Osso e Ossos/anatomia & histologia , Osso e Ossos/química , Humanos , Microscopia , Síncrotrons
8.
Nat Commun ; 11(1): 1793, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286291

RESUMO

In high-energy physics, the Higgs field couples to gauge bosons and fermions and gives mass to their elementary excitations. Experimentally, such couplings can be inferred from the decay product of the Higgs boson, i.e., the scalar (amplitude) excitation of the Higgs field. In superconductors, Cooper pairs bear a close analogy to the Higgs field. Interaction between the Cooper pairs and other degrees of freedom provides dissipation channels for the amplitude mode, which may reveal important information about the microscopic pairing mechanism. To this end, we investigate the Higgs (amplitude) mode of several cuprate thin films using phase-resolved terahertz third harmonic generation (THG). In addition to the heavily damped Higgs mode itself, we observe a universal jump in the phase of the driven Higgs oscillation as well as a non-vanishing THG above Tc. These findings indicate coupling of the Higgs mode to other collective modes and potentially a nonzero pairing amplitude above Tc.

9.
Sci Adv ; 4(7): eaar5164, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30027115

RESUMO

To gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet. After ultrafast resonant lattice excitation, we observe that magnetic order reduces on distinct time scales of 1 ps and 100 ns. Temperature-dependent measurements, a spin-coupling analysis, and simulations show that the two dynamics directly reflect two stages of spin-lattice equilibration. On the 1-ps scale, spins and phonons reach quasi-equilibrium in terms of energy through phonon-induced modulation of the exchange interaction. This mechanism leads to identical demagnetization of the ferrimagnet's two spin sublattices and to a ferrimagnetic state of increased temperature yet unchanged total magnetization. Finally, on the much slower, 100-ns scale, the excess of spin angular momentum is released to the crystal lattice, resulting in full equilibrium. Our findings are relevant for all insulating ferrimagnets and indicate that spin manipulation by phonons, including the spin Seebeck effect, can be extended to antiferromagnets and into the terahertz frequency range.

10.
J Phys Chem B ; 110(3): 1332-7, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16471682

RESUMO

The electrochemical grafting process of 4-nitrobenzene and 4-methoxybenzene (anisole) from diazonium salt solutions has been investigated in situ by monitoring the current density, the band bending, and the nonradiative surface recombination during grafting at different potentials and different concentrations of the diazonium salt in the solution. Ex situ infrared spectroscopic ellipsometry has been used to inspect the Si surface species before and after the grafting process. The band bending decreases with either increasing concentration of diazonium salt or when the redox potential of the diazonium compound (anisole) is nearer to the competing H+/H2 couple. The surface recombination increases at more cathodic potentials if an electron donor group is present at the phenyl ring (nitrobenzene) and vice versa for the electron acceptor group (anisole). The influence of side reactions can be reduced by use of moderate concentration and moderate or strong cathodic potential, depending on the redox potential of the diazonium compound.


Assuntos
Compostos de Diazônio/química , Silício/química , Eletroquímica , Elétrons , Oxirredução , Propriedades de Superfície , Fatores de Tempo
11.
Nat Commun ; 6: 8175, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26381700

RESUMO

In-plane anisotropic ground states are ubiquitous in correlated solids such as pnictides, cuprates and manganites. They can arise from doping Mott insulators and compete with phases such as superconductivity; however, their origins are debated. Strong coupling between lattice, charge, orbital and spin degrees of freedom results in simultaneous ordering of multiple parameters, masking the mechanism that drives the transition. Here we demonstrate that the orbital domains in a manganite can be oriented by the polarization of a pulsed THz light field. Through the application of a Hubbard model, we show that domain control can be achieved by enhancing the local Coulomb interactions, which drive domain reorientation. Our results highlight the key role played by the Coulomb interaction in the control and manipulation of orbital order in the manganites and demonstrate a new way to use THz to understand and manipulate anisotropic phases in a potentially broad range of correlated materials.

12.
Anal Chem ; 79(20): 7676-82, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17877422

RESUMO

The switching behavior of stimuli-responsive mixed polymer brushes (d = 11 nm) was monitored for the first time in liquid phase in situ by infrared spectroscopic ellipsometry (IRSE). IRSE is presented as a new, sensitive in situ tool for online analysis of chemical changes in a thin complex film at the solid/liquid interface. Responsive behavior (protonation and deprotonation reaction) of the poly(acrylic acid)/poly(2-vinylpyridine) (PAA-mix-P2VP) brush was probed in aqueous solutions with pH ranging from pH 2 to pH 10. Structural and chemical changes in a thin polymer brush layer were identified from the analysis of infrared ellipsometric tanPsi spectra during the variation of pH. Systematic change in pH confirmed the reversible switching behavior of the PAA-mix-P2VP brush between three different states: swollen P2VP and compact PAA chains at pH 2, a compact "P2VP...PAA" complex at pH 6.5, and swollen PAA and compact P2VP chains at pH 10.


Assuntos
Eletrólitos/química , Espectrofotometria Infravermelho/métodos , Concentração de Íons de Hidrogênio , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA