Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 144(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34590691

RESUMO

The characterization of human subcutaneous adipose tissue (SAT) under high-rate loading is valuable for development of biofidelic finite element human body models (FE-HBMs) to predict seat belt-pelvis interaction and injury risk in vehicle crash simulations. While material characterization of SAT has been performed at 25 °C or 37 °C, the effect of temperature on mechanical properties of SAT under high-rate and large-deformation loading has not been investigated. Similarly, while freezing is the most common preservation technique for cadaveric specimens, the effect of freeze-thaw on the mechanical properties of SAT is also absent from the literature. Therefore, the aim of this study was to determine the effect of freezing and temperature on mechanical properties of human SAT. Fresh and previously frozen human SAT specimens were obtained and tested at 25 °C and 37 °C. High-rate indentation and puncture tests were performed, and indentation-puncture force-depth responses were obtained. While the chance of material failure was found to be different between temperatures and between fresh and previously frozen tissue, statistical analyses revealed that temperature and freezing did not change the shear modulus and failure characteristics of SAT. Therefore, the results of the current study indicated that SAT material properties characterized from either fresh or frozen tissue at either 25 °C or 37 °C could be used for enhancing the biofidelity of FE-HBMs.


Assuntos
Tecido Adiposo , Punções , Fenômenos Biomecânicos , Congelamento , Humanos , Temperatura
2.
J Biomech Eng ; 143(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625495

RESUMO

Mechanical models of adipose tissue are important for various medical applications including cosmetics, injuries, implantable drug delivery systems, plastic surgeries, biomechanical applications such as computational human body models for surgery simulation, and blunt impact trauma prediction. This article presents a comprehensive review of in vivo experimental approaches that aimed to characterize the mechanical properties of adipose tissue, and the resulting constitutive models and model parameters identified. In particular, this study examines the material behavior of adipose tissue, including its nonlinear stress-strain relationship, viscoelasticity, strain hardening and softening, rate-sensitivity, anisotropy, preconditioning, failure behavior, and temperature dependency.


Assuntos
Viscosidade
3.
Ann Biomed Eng ; 51(6): 1216-1225, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36681746

RESUMO

Anticipating changes to vehicle interiors with future automated driving systems, the automobile industry recently has focused attention on crash response in novel postures with increased seatback recline. Prior research found that this posture may result in greater risk of lumbar spine injury in the event of a frontal crash. This study developed a lumbar spine injury risk function (IRF) that estimated injury risk as a function of simultaneously applied compression force and flexion moment. Force and moment failure data from 40 compression-flexion tests were utilized in a Weibull survival model, including appropriate data censoring. A mechanics-based injury metric was formulated, where lumbar spine compression force and flexion moment were normalized by specimen geometry. Subject age was incorporated as a covariate to further improve model fit. A weighting factor was included to adjust the influence of force and moment, and parameter optimization yielded a value of 0.11. Thus, the normalized compression force component had a greater effect on injury risk than the normalized flexion moment component. Additionally, as force was nominally increased, less moment was required to produce injury for a given age and specimen geometry. The resulting IRF may be utilized to improve occupant safety in the future.


Assuntos
Acidentes de Trânsito , Traumatismos da Coluna Vertebral , Humanos , Automóveis , Vértebras Lombares/fisiologia , Fenômenos Biomecânicos
4.
J Biomech ; 135: 111051, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325753

RESUMO

Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupants in frontal crashes have shown that the lumbar spine can be subjected to simultaneous and out-of-phase combined axial compression and flexion loading. Lumbar spine failure tolerance in combined compression-flexion has not been widely explored in the literature. Therefore, the goal of this study was to measure the failure tolerance of the lumbar spine in combined compression and flexion. Forty lumbar spine segments with three vertebrae (one unconstrained) and two intervertebral discs (both unconstrained) were pre-loaded with axial compression (2200N, 3300N, or 4500N) and then subjected to rotation-controlled dynamic flexion bending until failure. Clinically relevant middle vertebra fractures were observed in twenty-one of the specimens, including compression and burst fractures. The remaining nineteen specimens experienced failure at the potting-grip interface. Failure tolerance varied within the sample and were categorized by the appropriate data censoring, with clinically relevant middle vertebrae fractures characterized as uncensored or left-censored and potting-grip fractures characterized as right-censored. Average failure force and moment were 3290N (range: 1580N to 5042N) and 51Nm (range: 0Nm to 156 Nm) for uncensored data, 3686N (range: 3145N to 4112N) and 0Nm for left-censored data, and 3470N (range: 2138N to 5062N) and 101Nm (range: 27Nm to 182Nm) for right-censored data. These data can be used to develop and improve injury prediction tools for lumbar spine fractures and further research in future safety systems.


Assuntos
Vértebras Lombares , Fraturas da Coluna Vertebral , Acidentes de Trânsito , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular
5.
J Mech Behav Biomed Mater ; 113: 104112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010697

RESUMO

Understanding the mechanical properties of human adipose tissue, and its influence on seat belt-pelvis interaction is beneficial for computational human body models that are developed for injury prediction in the vehicle crashworthiness simulations. While various studies have characterized adipose tissue, most of the studies used porcine adipose tissue as a surrogate, and none of the studies were performed at loading rates relevant for motor vehicle collisions. In this work, the mechanical response of human and porcine adipose tissue was studied. Two dynamic loading modes (compression and simple shear) were tested in adipose tissue extracted from the human abdomen and porcine back. An Ogden hyperelastic model was used to fit the loading response, and specific material parameters were obtained for each specimen. Two-sample t-tests were performed to compare the effective shear moduli and peak stresses from porcine and human samples. The material response of the human adipose tissue was consistent with previous studies. Porcine adipose tissue was found to be significantly stiffer than human adipose tissue under compression and shear loading. Also, when material model parameters were fit to only one loading mode, the predicted response in the other mode showed a poor fit.


Assuntos
Tecido Adiposo , Animais , Elasticidade , Humanos , Projetos Piloto , Pressão , Estresse Mecânico , Suínos
6.
Acta Biomater ; 129: 188-198, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048975

RESUMO

The mechanical behavior of subcutaneous adipose tissue (SAT) affects the interaction between vehicle occupants and restraint systems in motor vehicle crashes (MVCs). To enhance future restraints, injury countermeasures, and other vehicle safety systems, computational simulations are often used to augment experiments because of their relative efficiency for parametric analysis. How well finite element human body models (FE-HBMs), which are often used in such simulations, predict human response has been limited by the absence of material models for human SAT that are applicable to the MVC environment. In this study, for the first time, dynamic multidirectional unconfined compression and simple shear loading tests were performed on human abdominal SAT specimens under conditions similar to MVCs. We also performed multiple ramp-hold tests to evaluate the quasilinear viscoelasticity (QLV) assumption and capture the stress relaxation behavior under both compression and shear. Our mechanical characterization was supplemented with scanning electron microscopy (SEM) performed in different orientations to investigate whether the macrostructural response can be related to the underlying microstructure. While the overall structure was shown to be visually different in different anatomical planes, a preferred orientation of any fibrous structures could not be identified. We showed that the nonlinear, viscoelastic, and direction-dependent responses under compression and shear tests could be captured by incorporating QLV in an Ogden-type hyperelastic model. Our comprehensive approach will lead to more accurate computational simulations and support the collective effort on the research of future occupant protection systems. STATEMENT OF SIGNIFICANCE: There is an urgent need to characterize the mechanical behavior of human adipose tissue under multiple dynamic loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We performed the first series of experiments on human adipose tissue specimens to characterize the multi-directional compression and shear behavior at impact loading rates and obtained scanning electron microscope images to investigate whether the macrostructural response can be related to the underlying microstructure. The results showed that human adipose tissue is nonlinear, viscoelastic and direction dependent, and its mechanical response under compression and shear tests at different loading rates can be captured by incorporating quasi-linear viscoelasticity in an Ogden-type hyperelastic model.


Assuntos
Tecido Adiposo , Modelos Biológicos , Elasticidade , Análise de Elementos Finitos , Humanos , Pressão , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA