Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int ; 104(4): 787-802, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507049

RESUMO

Both clinical and experimental data suggest that podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD). Although the mechanisms underlying the development of podocyte loss are not completely understood, critical structural proteins such as podocin play a major role in podocyte survival and function. We have reported that the protein tyrosine phosphatase SHP-1 expression increased in podocytes of diabetic mice and glomeruli of patients with diabetes. However, the in vivo contribution of SHP-1 in podocytes is unknown. Conditional podocyte-specific SHP-1-deficient mice (Podo-SHP-1-/-) were generated to evaluate the impact of SHP-1 deletion at four weeks of age (early) prior to the onset of diabetes and after 20 weeks (late) of diabetes (DM; Ins2+/C96Y) on kidney function (albuminuria and glomerular filtration rate) and kidney pathology. Ablation of the SHP-1 gene specifically in podocytes prevented and even reversed the elevated albumin/creatinine ratio, glomerular filtration rate progression, mesangial cell expansion, glomerular hypertrophy, glomerular basement membrane thickening and podocyte foot process effacement induced by diabetes. Moreover, podocyte-specific deletion of SHP-1 at an early and late stage prevented diabetes-induced expression of collagen IV, fibronectin, transforming growth factor-ß, transforming protein RhoA, and serine/threonine kinase ROCK1, whereas it restored nephrin, podocin and cation channel TRPC6 expression. Mass spectrometry analysis revealed that SHP-1 reduced SUMO2 post-translational modification of podocin while podocyte-specific deletion of SHP-1 preserved slit diaphragm protein complexes in the diabetic context. Thus, our data uncovered a new role of SHP-1 in the regulation of cytoskeleton dynamics and slit diaphragm protein expression/stability, and its inhibition preserved podocyte function preventing DKD progression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Animais , Camundongos , Diabetes Mellitus Experimental/induzido quimicamente , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Podócitos/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Quinases Associadas a rho/metabolismo , Sumoilação
2.
Cell Biol Toxicol ; 39(6): 3061-3075, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368165

RESUMO

Tungsten is widely used in medical, industrial, and military applications. The environmental exposure to tungsten has increased over the past several years, and few studies have addressed its potential toxicity. In this study, we evaluated the effects of chronic oral tungsten exposure (100 ppm) on renal inflammation in male mice. We found that 30- or 90-day tungsten exposure led to the accumulation of LAMP1-positive lysosomes in renal tubular epithelial cells. In addition, the kidneys of mice exposed to tungsten showed interstitial infiltration of leukocytes, myeloid cells, and macrophages together with increased levels of proinflammatory cytokines and p50/p65-NFkB subunits. In proximal tubule epithelial cells (HK-2) in vitro, tungsten induced a similar inflammatory status characterized by increased mRNA levels of CSF1, IL34, CXCL2, and CXCL10 and NFkB activation. Moreover, tungsten exposure reduced HK-2 cell viability and enhanced reactive oxygen species generation. Conditioned media from HK-2 cells treated with tungsten induced an M1-proinflammatory polarization of RAW macrophages as evidenced by increased levels of iNOS and interleukin-6 and decreased levels of the M2-antiinflammatory marker CD206. These effects were not observed when RAW cells were exposed to conditioned media from HK-2 cells treated with tungsten and supplemented with the antioxidant N-acetylcysteine (NAC). Similarly, direct tungsten exposure induced M1-proinflammatory polarization of RAW cells that was prevented by NAC co-treatment. Altogether, our data suggest that prolonged tungsten exposure leads to oxidative injury in the kidney ultimately leading to chronic renal inflammation characterized by a proinflammatory status in kidney tubular epithelial cells and immune cell infiltration.


Assuntos
Rim , Tungstênio , Masculino , Camundongos , Animais , Tungstênio/toxicidade , Meios de Cultivo Condicionados , Macrófagos , Células Epiteliais , NF-kappa B , Inflamação/induzido quimicamente
3.
Biochem Biophys Res Commun ; 624: 127-133, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35940125

RESUMO

Podocytes are insulin-sensitive cells, and their loss is critical in diabetic nephropathy (DN) progression that could lead to end-stage kidney disease. We have previously shown that decreased DUSP4 expression caused elevated JNK phosphorylation in the diabetic kidney and worsened DN characteristics. Yet, the role of DUSP4 in diabetic podocyte insulin resistance and the progression of DN remains unclear. Here, we report that HG-exposed podocytes exhibited reduced DUSP4 expression, increased phosphorylation of JNK and serine 307 of IRS1 as well as Nox4 expression, while decreasing insulin signaling actions. DUSP4 overexpression, JNK and Nox1/4 inhibition prevented HG-induced serine 307 phosphorylation of IRS1 and restored insulin actions. Diabetic mice showed renal dysfunction and insulin resistance, characteristics that were exacerbated in diabetic DUSP4 deficient mice due to Nox1/4 upregulation. Thus, our results demonstrated that diabetes-induced reduction of DUSP4 leads to JNK activation and elevated Nox4 expression, which contributes to podocyte dysfunction, insulin resistance and progression of DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Resistência à Insulina , Podócitos , Animais , Apoptose , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Estresse Oxidativo , Podócitos/metabolismo , Serina/metabolismo
4.
FASEB J ; 35(5): e21559, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835594

RESUMO

Diabetic nephropathy (DN) remains the major cause of end-stage renal disease (ESRD). We used high-fat/high-sucrose (HFHS)-fed LDLr-/- /ApoB100/100 mice with transgenic overexpression of IGFII in pancreatic ß-cells (LRKOB100/IGFII) as a model of ESRD to test whether dietary long chain omega-3 polyunsaturated fatty acids LCω3FA-rich fish oil (FO) could prevent ESRD development. We further evaluated the potential of docosahexaenoic acid (DHA)-derived pro-resolving lipid mediators, 17-hydroxy-DHA (17-HDHA) and Protectin DX (PDX), to reverse established ESRD damage. HFHS-fed vehicle-treated LRKOB100/IGFII mice developed severe kidney dysfunction leading to ESRD, as revealed by advanced glomerular fibrosis and mesangial expansion along with reduced percent survival. The kidney failure outcome was associated with cardiac dysfunction, revealed by reduced heart rate and prolonged diastolic and systolic time. Dietary FO prevented kidney damage, lean mass loss, cardiac dysfunction, and death. 17-HDHA reduced podocyte foot process effacement while PDX treatment alleviated kidney fibrosis and mesangial expansion as compared to vehicle treatment. Only PDX therapy was effective at preserving the heart function and survival rate. These results show that dietary LCω3FA intake can prevent ESRD and cardiac dysfunction in LRKOB100/IGFII diabetic mice. Our data further reveals that PDX can protect against renal failure and cardiac dysfunction, offering a potential new therapeutic strategy against ESRD.


Assuntos
Aterosclerose/complicações , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Falência Renal Crônica/tratamento farmacológico , Animais , Apolipoproteína B-100/fisiologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/fisiologia
5.
Arterioscler Thromb Vasc Biol ; 41(9): 2469-2482, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320834

RESUMO

Objective: Critical limb ischemia is a major complication of diabetes characterized by insufficient collateral vessel development and proper growth factor signaling unresponsiveness. Although mainly deactivated by hypoxia, phosphatases are important players in the deregulation of proangiogenetic pathways. Previously, SHP-1 (Scr homology 2-containing phosphatase-1) was found to be associated with the downregulation of growth factor actions in the diabetic muscle. Thus, we aimed to gain further understanding of the impact of SHP-1 on smooth muscle cell (SMC) function under hypoxic and diabetic conditions. Approach and Results: Despite being inactivated under hypoxic conditions, high glucose level exposure sustained SHP-1 phosphatase activity in SMC and increased its interaction with PDGFR (platelet-derived growth factor receptor)-ß, thus reducing PDGF proangiogenic actions. Overexpression of an inactive form of SHP-1 fully restored PDGF-induced proliferation, migration, and signaling pathways in SMC exposed to high glucose and hypoxia. Nondiabetic and diabetic mice with deletion of SHP-1 specifically in SMC were generated. Ligation of the femoral artery was performed, and blood flow was measured for 4 weeks. Blood flow reperfusion, vascular density and maturation, and limb survival were all improved while vascular apoptosis was attenuated in diabetic SMC-specific SHP-1 null mice as compared to diabetic mice. Conclusions: Diabetes and high glucose level exposure maintained SHP-1 activity preventing hypoxia-induced PDGF actions in SMC. Specific deletion of SHP-1 in SMC partially restored blood flow reperfusion in the diabetic ischemic limb. Therefore, local modulation of SHP-1 activity in SMC could represent a potential therapeutic avenue to improve the proangiogenic properties of SMC under ischemia and diabetes.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus Experimental/enzimologia , Angiopatias Diabéticas/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Bovinos , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Transdução de Sinais
6.
Oecologia ; 199(1): 13-26, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35044501

RESUMO

Foraging spatial segregation is frequent in central-place foragers during the breeding season, but very few studies have investigated foraging spatial segregation between adjacent sub-colonies. Here, we assessed for within-colony differences in the at-sea distribution, habitat use, trophic ecology and chick growth data of two Calonectris colonies differing in size, and breeding in two different environments in the North Atlantic Ocean. For this, we GPS tracked 52 Cory's shearwaters (Calonectris borealis) breeding in 2 small sub-colonies at Berlenga Island (Portugal) and 59 Cape Verde shearwaters (Calonectris edwardsii) breeding in 2 sub-colonies differing greatly in size at Raso Islet (Cabo Verde), over 2 consecutive breeding seasons (2017-2018), during chick-rearing. Cory's shearwaters from the two sub-colonies at Berlenga Island broadly overlapped in repeatedly used foraging patches close to the colony. In contrast, the foraging distribution of Cape Verde shearwaters was partially segregated in the colony surroundings, but overlapped at distant foraging areas off the west coast of Africa. Despite spatial segregation close to the colony, Cape Verde shearwaters from both sub-colonies departed in similar directions, foraged in similar habitats and exhibited mostly short trips within the archipelago of Cabo Verde. These results, corroborated with similar trophic ecology and chick growth rates between sub-colonies, support the idea that foraging spatial segregation in the colony surroundings was not likely driven by interference competition or directional bias. We suggest that high-quality prey patches are able to shape travel costs and foraging distribution of central-place foragers from neighbouring sub-colonies.


Assuntos
Aves , Ecologia , Animais , Oceano Atlântico , Ecossistema , Estações do Ano
7.
Eur J Appl Physiol ; 122(4): 1085-1095, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182182

RESUMO

PURPOSE: Type 2 diabetes is associated with a higher risk of cardiovascular diseases, lowering the quality of life and increasing mortality rates of affected individuals. Circulating monocytes are tightly involved in the atherosclerosis process leading to cardiovascular diseases (CVD), and their inflammatory profile can be modified by exercise. The objective was to exploratory identify genes associated with CVD that could be regulated by high-intensity interval training (HIIT) in monocytes of type 2 diabetes patients. METHODS: Next-generation RNA sequencing (RNA-seq) analyses were conducted on isolated circulating monocytes (CD14+) of six women aged 60 and over with type 2 diabetes who completed a 12-week supervised HIIT intervention on a treadmill. RESULTS: Following the intervention, a reduction of resting diastolic blood pressure was observed. Concomitant with this result, 56 genes were found to be downregulated following HIIT intervention in isolated monocytes. A large proportion of the regulated genes was involved in cellular adhesion, migration and differentiation into an "atherosclerosis-specific" macrophage phenotype. CONCLUSION: The downregulation of transcripts in monocytes globally suggests a favorable cardiovascular effect of the HIIT in older women with type 2 diabetes. In the context of precision medicine and personalized exercise prescription, shedding light on the fundamental mechanisms underlying HIIT effects on the gene profile of immune cells is essential to develop efficient nonpharmacological strategies to prevent CVD in high-risk population.


Assuntos
Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Monócitos , Qualidade de Vida , Transcriptoma
9.
Curr Opin Nephrol Hypertens ; 27(1): 49-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29068796

RESUMO

PURPOSE OF REVIEW: Deregulation of protecting factor signaling actions in podocytes has emerged as an alternative pathway of podocyte injury mechanisms. Here, we review recent knowledge that highlighted how podocyte protecting factors are modulated by protein phosphatases. RECENT FINDINGS: Protein tyrosine kinases and phosphatases participate in many, if not all, aspects of cellular function by turning on or off multiple signaling cascades and podocytes are no exception. Modulation of tyrosine residue phosphorylation of podocyte factors such as nephrin, vascular endothelial growth factor, insulin receptors and substrates has been shown to promote podocyte damage and cell death that contributed to multiple glomerular diseases. Protein phosphatase activity can cause either an increase [Src homology 2 domain-containing phosphatase 2 (SHP-2)] or a decrease [Protein tyrosine phosphatase1B (PTP1B), SHP-1 and SH2 domain-containing 5'-inositol phosphatase 2 (SHIP2)] in nephrin tyrosine phosphorylation depending on which podocyte injury model was used. Insulin resistance is closely linked to the development and progression of renal disease. Expression of PTP1B, SHP-1, phosphatase and tensin homolog and SHIP2 are potential mechanisms of podocytes insulin resistance in diabetic kidney disease. SUMMARY: Tight regulation of protein phosphatases is critical to maintain cell homeostasis and may offer new perceptive targets to restore protecting factor actions in order to prevent podocyte dysfunction and glomerular diseases.


Assuntos
Nefropatias Diabéticas/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Animais , Humanos , Resistência à Insulina , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosforilação , Fatores de Proteção , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
10.
Arterioscler Thromb Vasc Biol ; 37(12): 2291-2300, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29074590

RESUMO

OBJECTIVE: Ischemia caused by narrowing of femoral artery is a major cause of peripheral arterial disease and morbidity affecting patients with diabetes mellitus. We have previously reported that the inhibition of the angiogenic response to VEGF (vascular endothelial growth factor) in diabetic mice was associated with the increased expression of SHP-1 (SH2 domain-containing phosphatase 1), a protein that can be activated by the AT2 (angiotensin II type 2) receptor. Deletion of AT2 receptor has been shown to promote angiogenesis within the ischemic muscle. However, the relative impact of AT2 receptor in diabetic condition remains unknown. APPROACH AND RESULTS: Nondiabetic and diabetic AT2 null (Atgr2-/Y) mice underwent femoral artery ligation after 2 months of diabetes mellitus. Blood perfusion was measured every week ≤4 weeks post-surgery. Expression of the VEGF, SHP-1, and renin-angiotensin pathways was evaluated. Blood flow in the ischemic muscle of diabetic Atgr2-/Y mice recovered faster and ≤80% after 4 weeks compared with 51% recovery in diabetic control littermates. Diabetic Atgr2-/Y had reduced apoptotic endothelial cells and elevated small vessel formation compared with diabetic Atgr2+/Y mice, as well as increased SHP-1 expression and reduced VEGF receptor activity. In endothelial cells, high glucose levels and AT2 agonist treatment did not change SHP-1, VEGF, and VEGF receptor expression. However, the activity of SHP-1 and its association with the VEGF receptors were increased, causing inhibition of the VEGF action in endothelial cell proliferation and migration. CONCLUSIONS: Our results suggest that the deletion of AT2 receptor reduced SHP-1 activity and restored VEGF actions, leading to an increased blood flow reperfusion after ischemia in diabetes mellitus.


Assuntos
Diabetes Mellitus/metabolismo , Angiopatias Diabéticas/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptor Tipo 2 de Angiotensina/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/metabolismo , Bovinos , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Deleção de Genes , Genótipo , Membro Posterior , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptor Tipo 2 de Angiotensina/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Sistema Renina-Angiotensina , Transdução de Sinais , Fatores de Tempo
11.
Adv Exp Med Biol ; 966: 149-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28639250

RESUMO

Diabetes is the leading cause of microalbuminuria and end-stage renal failure in industrial countries. Disruption of the filtration barrier, seen in almost all nephrotic diseases and diabetes, is the result of the loss or effacement of the podocyte foot process, notably damage of proteins within the slit diaphragm such as nephrin. For many years, nephrin has been viewed as a structural component of the slit diaphragm. It is now well recognized that nephrin contains several tyrosine residues in its cytoplasmic domain, which influences the development of glomerular injury. In this review, we propose an overview of nephrin signaling pathways in kidney injury.


Assuntos
Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Insuficiência Renal Crônica/metabolismo , Animais , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Humanos , Rim/patologia , Rim/fisiopatologia , Fosforilação , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Transdução de Sinais
12.
J Biol Chem ; 290(1): 350-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404734

RESUMO

Nephrin, a critical podocyte membrane component that is reduced in diabetic nephropathy, has been shown to activate phosphotyrosine signaling pathways in human podocytes. Nephrin signaling is important to reduce cell death induced by apoptotic stimuli. We have shown previously that high glucose level exposure and diabetes increased the expression of SHP-1, causing podocyte apoptosis. SHP-1 possesses two Src homology 2 domains that serve as docking elements to dephosphorylate tyrosine residues of target proteins. However, it remains unknown whether SHP-1 interacts with nephrin and whether its elevated expression affects the nephrin phosphorylation state in diabetes. Here we show that human podocytes exposed to high glucose levels exhibited elevated expression of SHP-1, which was associated with nephrin. Coexpression of nephrin-CD16 and SHP-1 reduced nephrin tyrosine phosphorylation in transfected human embryonic kidney 293 cells. A single tyrosine-to-phenylalanine mutation revealed that rat nephrin Tyr(1127) and Tyr(1152) are required to allow SHP-1 interaction with nephrin. Overexpression of dominant negative SHP-1 in human podocytes prevented high glucose-induced reduction of nephrin phosphorylation. In vivo, immunoblot analysis demonstrated that nephrin expression and phosphorylation were decreased in glomeruli of type 1 diabetic Akita mice (Ins2(+/C96Y)) compared with control littermate mice (Ins2(+/+)), and this was associated with elevated SHP-1 and cleaved caspase-3 expression. Furthermore, immunofluorescence analysis indicated increased colocalization of SHP-1 with nephrin in diabetic mice compared with control littermates. In conclusion, our results demonstrate that high glucose exposure increases SHP-1 interaction with nephrin, causing decreased nephrin phosphorylation, which may, in turn, contribute to diabetic nephropathy.


Assuntos
Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Glomérulos Renais/metabolismo , Proteínas de Membrana/genética , Podócitos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Animais , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Glucose/toxicidade , Células HEK293 , Humanos , Insulina/genética , Insulina/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Fosfotirosina/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Ratos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Transdução de Sinais
13.
Eur J Pharmacol ; 977: 176663, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815786

RESUMO

BACKGROUND: We have documented profound release of nitric oxide (NO) and endothelium-derived hyperpolarization factor (EDHF) by angiotensin II (ANGII) receptor 1 (AT1) blocker (ARB) losartan and its unique metabolite EXP3179, a pleiotropic effect that may help rationalize the protective properties of ARBs. Since blood pressure (BP) lowering by ARBs likely require an ANGII-dependent switch from AT1 to ANGII receptor 2 (AT2) signaling, a receptor known to stimulate endothelial NO release, we investigated the contribution of AT1 and AT2 to losartan and EXP3179's endothelial function-activating properties. EXPERIMENTAL APPROACH: Two AT1 ligands were used in an attempt to block the AT1-dependent endothelium-enhancing effects of EXP3179. AT2-null mice were used to evaluate the acute ex vivo and chronic in vivo effects of EXP3179 (20µM) and losartan (0.6 g/l), respectively, on endothelial function, BP and aortic stiffness. KEY RESULTS: Ex vivo blockade of AT1 receptors did not attenuate EXP3179's effects on NO and EDHF-dependent endothelial function activation. We observed significant reductions in PE-induced contractility with EXP3179 in both WT and AT2 knockout (KO) aortic rings. In vivo, a 1-month chronic treatment with losartan did not affect pulse wave velocity (PWV) but decreased PE-induced contraction by 74.9 % in WT (p < 0.0001) and 47.3 % in AT2 KO (p < 0.05). Presence of AT2 was critical to losartan's BP lowering activity. CONCLUSION: In contrast to BP lowering, the endothelial function-enhancing effects of losartan and EXP3179 are mostly independent of the classic ANGII/AT1/AT2 pathway, which sheds light on ARB pleiotropism.


Assuntos
Pressão Sanguínea , Endotélio Vascular , Losartan , Camundongos Knockout , Receptor Tipo 2 de Angiotensina , Animais , Losartan/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Camundongos , Receptor Tipo 2 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Masculino , Óxido Nítrico/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Imidazóis/farmacologia , Camundongos Endogâmicos C57BL , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Rigidez Vascular/efeitos dos fármacos , Sulfonamidas , Tiofenos
14.
Am J Physiol Endocrinol Metab ; 304(11): E1188-98, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23531619

RESUMO

Renal podocyte apoptosis is an early event of diabetic nephropathy progression. Insulin action is critical for podocyte survival. Previous studies demonstrated that Src homology-2 domain-containing phosphatase-1 (SHP-1) is elevated in renal cortex of type 1 diabetic mice; we hypothesized that hyperglycemia-induced SHP-1 expression may affect insulin actions in podocytes. Type 1 diabetic Akita mice (Ins2(+/C96Y)) developed elevated foot process effacement and podocyte apoptosis compared with control littermate mice (Ins2(+/+)). In contrast to Ins2(+/+) mice, insulin-stimulated protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) phosphorylation were remarkably reduced in renal podocytes of Akita mice. This renal insulin resistance was associated with elevated SHP-1 expression in the glomeruli. Cultured podocytes exposed to high glucose concentration (HG; 25 mM) for 96 h exhibited high levels of apoptotic markers and caspase-3/7 enzymatic activity. HG exposure raised mRNA and protein levels of SHP-1 and reduced the insulin-signaling pathway in podocytes. Overexpression of dominant-negative SHP-1 in podocytes prevented HG effects and restored insulin actions. Elevated SHP-1 expression induced by high glucose levels was directly associated with insulin receptor-ß in vitro and in vivo to prevent insulin-stimulated Akt and ERK phosphorylation. In conclusion, our results showed that high levels of SHP-1 expression in glomeruli cause insulin resistance and podocyte loss, thereby contributing to diabetic nephropathy.


Assuntos
Hiperglicemia/metabolismo , Insulina/metabolismo , Podócitos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptor de Insulina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 3/metabolismo , Linhagem Celular , Células Cultivadas , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Glucose/farmacologia , Hiperglicemia/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Podócitos/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptor de Insulina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
FASEB J ; 26(7): 2963-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22499584

RESUMO

This study characterizes the effect of glucose-induced activation of protein kinase Cδ (PKCδ) and Src homology-2 domain-containing phosphatase-1 (SHP-1) expression on vascular endothelial growth factor (VEGF) actions in glomerular podocytes in cultures and in glomeruli of diabetic rodents. Elevation of glucose levels induced PKCδ and p38 mitogen-activated protein kinase (p38 MAPK) to increase SHP-1 expression, increased podocyte apoptosis, and inhibited VEGF activation in podocytes and glomerular endothelial cells. The adverse effects of high glucose levels can be negated by molecular inhibitors of PKCδ, p38MAPK, and SHP-1 and only partially reduced by antioxidants and nuclear factor-κB (NF-κB) inhibitor. Increased PKCδ activation and SHP-1 expression correlated with loss of VEGF signaling and podocyte numbers in the glomeruli of diabetic rats and mice. In contrast, diabetic PKCδ-knockout (Prkcd(-/-)) mice did not exhibit activation of p38 MAPK and SHP-1 or inhibition of VEGF signaling in renal glomeruli. Functionally, diabetic Prkcd(-/-) mice had decreased expressions of TGFß, VEGF, and extracellular matrix and less albuminuria than diabetic Prkcd(+/+) mice. Hyperglycemia and diabetes can cause glomerular podocyte apoptosis and endothelial dysfunction partly due to increased PKCδ/p38 MAPK activation and the expression of SHP-1 to cause VEGF resistance, independent of NF-κB activation.


Assuntos
Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Sequência de Bases , Células Cultivadas , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Ativação Enzimática , Feminino , Glucose/metabolismo , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Podócitos/metabolismo , Podócitos/patologia , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Front Cardiovasc Med ; 10: 1191891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636297

RESUMO

Introduction: Peripheral arterial disease (PAD) is a major risk factor for lower-extremity amputation in diabetic patients. Unfortunately, previous clinical studies investigating therapeutic angiogenesis using the vascular endothelial growth factor (VEGF) have shown disappointing results in diabetic patients, which evokes the necessity for novel therapeutic agents. The apelinergic system (APJ receptor/apelin) is highly upregulated under hypoxic condition and acts as an activator of angiogenesis. Apelin treatment improves revascularization in nondiabetic models of ischemia, however, its role on angiogenesis in diabetic conditions remains poorly investigated. This study explored the impact of Pyr-apelin-13 in endothelial cell function and diabetic mouse model of hindlimb ischemia. Methods: Nondiabetic and diabetic mice underwent femoral artery ligation to induce limb ischemia. Diabetic mice were implanted subcutaneously with osmotic pumps delivering Pyr-apelin-13 for 28 days. Blood flow reperfusion was measured for 4 weeks post-surgery and exercise willingness was assessed with voluntary wheels. In vitro, bovine aortic endothelial cells (BAECs) were exposed to normal (NG) or high glucose (HG) levels and hypoxia. Cell migration, proliferation and tube formation assays were performed following either VEGF or Pyr-apelin-13 stimulation. Results and Discussion: Following limb ischemia, blood flow reperfusion, functional recovery of the limb and vascular density were improved in diabetic mice receiving Pyr-apelin-13 compared to untreated diabetic mice. In cultured BAECs, exposure to HG concentrations and hypoxia reduced VEGF proangiogenic actions, whereas apelin proangiogenic effects remained unaltered. Pyr-apelin-13 induced its proangiogenic actions through Akt/AMPK/eNOS and RhoA/ROCK signaling pathways under both NG or HG concentrations and hypoxia exposure. Our results identified the apelinergic system as a potential therapeutic target for angiogenic therapy in diabetic patients with PAD.

17.
Circ Res ; 106(8): 1319-31, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20431074

RESUMO

Both cardio- and microvascular complications adversely affect the life quality of patients with diabetes and have been the leading cause of mortality and morbidity in this population. Cardiovascular pathologies of diabetes have an effect on microvenules, arteries, and myocardium. It is believed that hyperglycemia is one of the most important metabolic factors in the development of both micro- and macrovascular complications in diabetic patients. Several prominent hypotheses exist to explain the adverse effect of hyperglycemia. One of them is the chronic activation by hyperglycemia of protein kinase (PK)C, a family of enzymes that are involved in controlling the function of other proteins. PKC has been associated with vascular alterations such as increases in permeability, contractility, extracellular matrix synthesis, cell growth and apoptosis, angiogenesis, leukocyte adhesion, and cytokine activation and inhibition. These perturbations in vascular cell homeostasis caused by different PKC isoforms (PKC-alpha, -beta1/2, and PKC-delta) are linked to the development of pathologies affecting large vessel (atherosclerosis, cardiomyopathy) and small vessel (retinopathy, nephropathy and neuropathy) complications. Clinical trials using a PKC-beta isoform inhibitor have been conducted, with some positive results for diabetic nonproliferative retinopathy, nephropathy, and endothelial dysfunction. This article reviews present understanding of how PKC isoforms cause vascular dysfunctions and pathologies in diabetes.


Assuntos
Glicemia/metabolismo , Complicações do Diabetes/enzimologia , Angiopatias Diabéticas/enzimologia , Endotélio Vascular/enzimologia , Cardiopatias/enzimologia , Proteína Quinase C/metabolismo , Animais , Fármacos Cardiovasculares/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/fisiopatologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/fisiopatologia , Diglicerídeos/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Cardiopatias/tratamento farmacológico , Cardiopatias/fisiopatologia , Humanos , Isoenzimas , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
18.
Kidney360 ; 3(10): 1710-1719, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36514736

RESUMO

Background: Diabetic kidney disease (DKD) remains the leading cause of end stage kidney disease worldwide. Despite significant advances in kidney care, there is a need to improve noninvasive techniques to predict the progression of kidney disease better for patients with diabetes. After injury, podocytes are shed in urine and may be used as a biologic tool. We previously reported that SHP-1 is upregulated in the kidney of diabetic mice, leading to podocyte dysfunction and loss. Our objective was to evaluate the expression levels of SHP-1 in urinary podocytes and kidney tissues of patients with diabetes. Methods: In this prospective study, patients with and without diabetes were recruited for the quantification of SHP-1 in kidney tissues, urinary podocytes, and peripheral blood monocytes. Immunochemistry and mass spectrometry techniques were applied for kidney tissues. Urinary podocytes were counted, and expression of SHP-1 and podocyte markers were measured by quantitative PCR. Results: A total of 66 participants (diabetic n=48, nondiabetic n=18) were included in the analyses. Diabetes was associated with increased SHP-1 expression in kidney tissues (P=0.03). Nephrin and podocin mRNA was not significantly increased in urinary podocytes from patients with diabetes compared with those without diabetes, whereas levels of SHP-1 mRNA expression significantly correlated with HbA1c and estimated glomerular filtration rate (eGFR). Additionally, follow-up (up to 2 years post recruitment) evaluation indicated that SHP-1 mRNA expression continued to increase with eGFR decline. Conclusions: Levels of SHP-1 in urinary podocytes may serve as an additional marker of glomerular disease progression in this population.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Rim/metabolismo , Podócitos/metabolismo , Estudos Prospectivos , Humanos
19.
Kidney Int ; 79(8): 883-96, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21228767

RESUMO

Insulin resistance has been associated with the progression of chronic kidney disease in both diabetes and obesity. In order to determine the cellular mechanisms contributing to this, we characterized insulin signaling in renal tubules and glomeruli during diabetic and insulin-resistant states using streptozotocin-diabetic and Zucker fatty-insulin-resistant rats. Compared with nondiabetic and Zucker lean rats, the insulin-induced phosphorylation of insulin receptor substrate-1 (IRS1), Akt, endothelial nitric oxide synthase, and glycogen synthase kinase 3α were selectively inhibited in the glomeruli but not in the renal tubules of both respective models. Protein, but not mRNA levels of IRS1, was decreased only in the glomeruli of streptozotocin-diabetic rats likely due to increased ubiquitination. Treatment with the protein kinase C-ß inhibitor, ruboxistaurin, enhanced insulin actions and elevated IRS1 expression. In glomerular endothelial cells, high glucose inhibited the phosphorylation of Akt, endothelial nitric oxide synthase, and glycogen synthase kinase 3α; decreased IRS1 protein expression and increased its association with ubiquitin. Overexpression of IRS1 or the addition of ruboxistaurin reversed the inhibitory effects of high glucose. Thus, loss of insulin's effect on endothelial nitric oxide synthase and glycogen synthase kinase 3α activation may contribute to the glomerulopathy observed in diabetes and obesity.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Proteínas Substratos do Receptor de Insulina/fisiologia , Resistência à Insulina/fisiologia , Glomérulos Renais/fisiopatologia , Obesidade/fisiopatologia , Proteína Quinase C/fisiologia , Animais , Antioxidantes/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Indóis/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina/genética , Glomérulos Renais/patologia , Masculino , Maleimidas/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/genética , Obesidade/patologia , Fosforilação , Inibidores de Proteassoma , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C beta , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptor de Insulina/metabolismo , Transdução de Sinais , Ubiquitinação
20.
Diab Vasc Dis Res ; 18(2): 1479164121999033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33722087

RESUMO

AIMS: Peripheral artery disease is a complication of diabetes leading to critical hindlimb ischemia. Diabetes-induced inhibition of VEGF actions is associated with the activation of protein kinase Cδ (PKCδ). We aim to specifically investigate the role of PKCδ in endothelial cell (EC) function and VEGF signaling. METHODS: Nondiabetic and diabetic mice, with (ec-Prkcd-/-) or without (ec-Prkcdf/f) endothelial deletion of PKCδ, underwent femoral artery ligation. Blood flow reperfusion was assessed up to 4 weeks post-surgery. Capillary density, EC apoptosis and VEGF signaling were evaluated in the ischemic muscle. Src homology region 2 domain-containing phosphatase-1 (SHP-1) phosphatase activity was assessed in vitro using primary ECs. RESULTS: Ischemic muscle of diabetic ec-Prkcdf/f mice exhibited reduced blood flow reperfusion and capillary density while apoptosis increased as compared to nondiabetic ec-Prkcdf/f mice. In contrast, blood flow reperfusion and capillary density were significantly improved in diabetic ec-Prkcd-/- mice. VEGF signaling pathway was restored in diabetic ec-Prkcd-/- mice. The deletion of PKCδ in ECs prevented diabetes-induced VEGF unresponsiveness through a reduction of SHP-1 phosphatase activity. CONCLUSIONS: Our data provide new highlights in mechanisms by which PKCδ activation in EC contributed to poor collateral vessel formation, thus, offering novel therapeutic targets to improve angiogenesis in the diabetic limb.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Células Endoteliais/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Neovascularização Fisiológica , Proteína Quinase C-delta/deficiência , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Bovinos , Células Cultivadas , Circulação Colateral , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/patologia , Isquemia/genética , Isquemia/fisiopatologia , Camundongos Knockout , Densidade Microvascular , Proteína Quinase C-delta/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA