Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(4): 2561-2572, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31883296

RESUMO

In autumn, agricultural perennial weeds prepare for winter and can store reserves into creeping roots or rhizomes. Little is known about influence of climate change in this period. We tested the effect of simulated climate change in autumn on three widespread and noxious perennial weeds, Elymus repens (L.) Gould, Cirsium arvense (L.) Scop. and Sonchus arvensis L. We divided and combined simulated climate change components into elevated CO2 concentration (525 ppm), elevated temperatures (+2-2.5°C), treatments in open-top chambers. In addition, a control in the open-top chamber without any increase in CO2 and temperature, and a field control outside the chambers were included. Two geographically different origins and three pre-growth periods prior to the exposure to climate change factors were included for each species. All species increased leaf area under elevated temperature, close to doubling in E. repens and quadrupling in the dicot species. E. repens kept leaves green later in autumn. C. arvense did not benefit in below-ground growth from more leaf area or leaf dry mass. S. arvensis had low levels of leaf area throughout the experiment and withered earlier than the two other species. Below-ground plant parts of S. arvensis were significantly increased by elevated temperature. Except for root:shoot ratio of C. arvense, the effects of pure elevated CO2 were not significant for any variables compared to the open-top chamber control. There was an additive, but no synergistic, effect of enhanced temperature and CO2 . The length of pre-growth period was highly important for autumn plant growth, while origin had minor effect. We conclude that the small transfer of enhanced above-ground growth into below-ground growth under climate change in autumn does not favour creeping perennial plants per se, but more leaf area may offer more plant biomass to be tackled by chemical or physical weed control.

2.
Weed Res ; 63(1): 1-11, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37082111

RESUMO

Over the last 30 years, many studies have surveyed weed vegetation on arable land. The 'Arable Weeds and Management in Europe' (AWME) database is a collection of 36 of these surveys and the associated management data. Here, we review the challenges associated with combining disparate datasets and explore some of the opportunities for future research that present themselves thanks to the AWME database. We present three case studies repeating previously published national scale analyses with data from a larger spatial extent. The case studies, originally done in France, Germany and the UK, explore various aspects of weed ecology (community composition, management and environmental effects and within-field distributions) and use a range of statistical techniques (canonical correspondence analysis, redundancy analysis and generalised linear mixed models) to demonstrate the utility and versatility of the AWME database. We demonstrate that (i) the standardisation of abundance data to a common measure, before the analysis of the combined dataset, has little impact on the outcome of the analyses, (ii) the increased extent of environmental or management gradients allows for greater confidence in conclusions and (iii) the main conclusions of analyses done at different spatial scales remain consistent. These case studies demonstrate the utility of a Europe-wide weed survey database, for clarifying or extending results obtained from studies at smaller scales. This Europe-wide data collection offers many more opportunities for analysis that could not be addressed in smaller datasets; including questions about the effects of climate change, macro-ecological and biogeographical issues related to weed diversity as well as the dominance or rarity of specific weeds in Europe.

3.
Front Plant Sci ; 13: 942346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909787

RESUMO

The use of wildflower species as biogas feedstock carries the risk that their seeds survive anaerobic digestion (AD) and cause weed problems if spread with the digestate. Risk factors for seed survival in AD include low temperature, short exposure and hardseededness (HS). However, it is not possible to predict how AD will affect seed viability of previously unstudied species. In laboratory-scale reactors, we exposed seeds of eight species from a mixture of flowering wild plants intended as biogas feedstock and three reference species to AD at two mesophilic temperatures. Half of the species were HS, the other was non-HS (NHS). Viability was determined using a combination of tetrazolium and germination tests. Viability and germinability were modeled as functions of exposure time using a dose-response approach. Responses to AD varied considerably among species, and none of the considered influencing factors (time, temperature, HS) had a consistent effect. Seed lots of a species differed in inactivation times and seed-killing efficacy. The HS species Melilotus officinalis, Melilotus albus, and Malva sylvestris were particularly AD-resistant. They were the only ones that exhibited biphasic viability curves and tended to survive and germinate more at 42°C than at 35°C. Viability of the remaining species declined in a sigmoidal curve. Most NHS species were inactivated within a few days (Cichorium intybus, Daucus carota, Echium vulgare, and Verbascum thapsus), while HS species survived longer (Malva alcea). AD stimulated germination in the HS species A. theophrasti and its AD-resistance overlapped with that of the most resistant NHS species, C. album and tomato. In all seed lots, germinability was lost faster than viability, implying that mainly dormant seeds survived. After the maximum exposure time of 36 days, seeds of HS species and Chenopodium album were still viable. We concluded that viability responses to mesophilic AD were determined by the interplay of AD-conditions and species- and seed-lot-specific traits, of which HS was an important but only one factor. For the use of wildflowers as biogas feedstock, we recommended long retention times and special care with regard to HS species.

4.
Trends Ecol Evol ; 36(12): 1067-1070, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563404

RESUMO

Reversing the decline of biodiversity in European agricultural landscapes is urgent. We suggest eight measures addressing politics, economics, and civil society to instigate transformative changes in agricultural landscapes. We emphasize the need for a well-informed society and political measures promoting sustainable farming by combining food production and biodiversity conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA