Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 103(23-24): 9401-9410, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31676919

RESUMO

Outer membrane vesicles (OMVs) are nanoparticles secreted by Gram-negative bacteria that can be used for diverse biotechnological applications. Interesting applications have been developed, where OMVs are the basis of drug delivery, enzyme carriers, adjuvants, and vaccines. Historically, OMV research has mainly focused on vaccines. Therefore, current OMV production processes have been based on batch processes. The production of OMVs in batch mode is characterized by relatively low yields and high costs. Transition of OMV production processes from batch to continuous processes could increase the volumetric productivity, reduce the production and capital costs, and result in a higher quality product. Here, we study the continuous production of Neisseria meningitidis OMVs to improve volumetric productivity. Continuous cultivation of N. meningitidis resulted in a steady state with similar high OMV concentrations as are reached in current batch processes. The steady state was reproducible and could be maintained for at least 600 h. The volumetric productivity of a continuous culture reached 4.0 × 1014 OMVs per liter culture per day, based on a dilution rate of 1/day. The tested characteristics of the OMVs did not change during the experiments showing feasibility of a continuous production process for the production of OMVs for any application.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Técnicas de Cultura Celular por Lotes/métodos , Biotecnologia/métodos , Neisseria meningitidis/metabolismo , Aminoácidos/análise , Meios de Cultura/química , Neisseria meningitidis/crescimento & desenvolvimento
2.
Microb Cell Fact ; 17(1): 157, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285743

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria and can be used as vaccines. Often, detergents are used to promote release of OMVs and to remove the toxic lipopolysaccharides. Lipopolysaccharides can be detoxified by genetic modification such that vesicles spontaneously produced by bacteria can be directly used as vaccines. The use of spontaneous OMVs has the advantage that no separate extraction step is required in the purification process. However, the productivity of spontaneous OMVs by bacteria at optimal growth conditions is low. One of many methods for increasing OMV formation is to reduce the linkage of the outer membrane to the peptidoglycan layer by knocking out the rmpM gene. A previous study showed that for Neisseria meningitidis this resulted in release of more OMVs. Furthermore, cysteine depletion was found to trigger OMV release and at the same time cause reduced growth and oxidative stress responses. Here we study the effect of growth rate and oxidative stress on OMV release. RESULTS: First, we identified using chemostat and accelerostat cultures of N. meningitidis that increasing the growth rate from 0.03 to 0.18 h-1 has a limited effect on OMV productivity. Thus, we hypothesized that oxidative stress is the trigger for OMV release and that oxidative stress can be introduced directly by increasing the dissolved oxygen tension of bacterial cultures. Slowly increasing oxygen concentrations in a N. meningitidis changestat showed that an increase from 30 to 150% air saturation improved OMV productivity four-fold. Batch cultures controlled at 100% air saturation increased OMV productivity three-fold over batch cultures controlled at 30% air saturation. CONCLUSION: Increased dissolved oxygen tension induces the release of outer membrane vesicles in N. meningitidis cultures. Since oxygen concentration is a well-controlled process parameter of bacterial cultures, this trigger can be applied as a convenient process parameter to induce OMV release in bacterial cultures. Improved productivity of OMVs not only improves the production costs of OMVs as vaccines, it also facilitates the use of OMVs as adjuvants, enzyme carriers, or cell-specific drug delivery vehicles.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Neisseria meningitidis/patogenicidade , Oxigênio/metabolismo , Estresse Oxidativo
3.
Proc Natl Acad Sci U S A ; 111(16): E1629-38, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711427

RESUMO

Prokaryotes encode adaptive immune systems, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated), to provide resistance against mobile invaders, such as viruses and plasmids. Host immunity is based on incorporation of invader DNA sequences in a memory locus (CRISPR), the formation of guide RNAs from this locus, and the degradation of cognate invader DNA (protospacer). Invaders can escape type I-E CRISPR-Cas immunity in Escherichia coli K12 by making point mutations in the seed region of the protospacer or its adjacent motif (PAM), but hosts quickly restore immunity by integrating new spacers in a positive-feedback process termed "priming." Here, by using a randomized protospacer and PAM library and high-throughput plasmid loss assays, we provide a systematic analysis of the constraints of both direct interference and subsequent priming in E. coli. We have defined a high-resolution genetic map of direct interference by Cascade and Cas3, which includes five positions of the protospacer at 6-nt intervals that readily tolerate mutations. Importantly, we show that priming is an extremely robust process capable of using degenerate target regions, with up to 13 mutations throughout the PAM and protospacer region. Priming is influenced by the number of mismatches, their position, and is nucleotide dependent. Our findings imply that even outdated spacers containing many mismatches can induce a rapid primed CRISPR response against diversified or related invaders, giving microbes an advantage in the coevolutionary arms race with their invaders.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli K12/genética , Escherichia coli K12/imunologia , Pareamento Incorreto de Bases/genética , Sequência de Bases , Bases de Dados Genéticas , Ensaios de Triagem em Larga Escala , Dados de Sequência Molecular , Mutação/genética , Motivos de Nucleotídeos/genética , Plasmídeos/genética , RNA Bacteriano/genética
4.
Vaccine ; 37(47): 6978-6986, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31383485

RESUMO

Outer membrane vesicles (OMVs) are nanoparticles produced by Gram-negative bacteria that can be used as vaccines. The application of OMVs as vaccine component can be expanded by expressing heterologous antigens on OMVs, creating an OMV-based antigen presenting platform. This study aims to develop a production process for such OMV-based vaccines and studies a production method based on meningococcal OMVs that express heterologous antigens on their surface. As a proof of concept, the Borrelia burgdorferi antigens OspA and OspC were expressed on Neisseria meningitidis OMVs to create a concept anti-Lyme disease vaccine. Production of OMVs released in the culture supernatant was induced by high dissolved oxygen concentrations and purification was based on scalable unit operations. A crude recovery of 90 mg OMV protein could be obtained per liter culture. Expressing heterologous antigens on the OMVs did result in minor reduction of bacterial growth, while OMV production remained constant. The antigen expression did not alter the OMV characteristics. This study shows that production of well characterized OMVs containing heterologous antigens is possible with high yields by combining high oxygen concentrations with an optimized purification process. It is concluded that heterologous OMVs show potential as a vaccine platform.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Borrelia burgdorferi/imunologia , Oxigênio/imunologia
5.
Sci Rep ; 9(1): 4716, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886228

RESUMO

Outer membrane vesicles (OMVs) produced by bacteria are interesting vaccine candidates. OMVs are nanoparticles that contain many immunogenic components, are self-adjuvating, and non-replicative. Despite recent insights in the biogenesis of OMVs, there is no consensus on a conserved mechanism of OMV release and the OMV yield from bacterial cultures remains low. For Neisseria meningitidis, a Gram-negative human pathogen causing meningitis and sepsis, a feasible OMV production method based on triggering OMV release by cysteine depletion has been described. In this study, we investigated the mechanism behind this external trigger for OMV release to improve the production process. Since enhanced OMV release upon cysteine depletion was associated with oxidative stress and redox responses, we investigate the influence of more oxidized sulfur sources on OMV release. We show that N. meningitidis grows similarly on sulfate, the most oxidized sulfur source, and OMV release is triggered by sulfur depletion in general. Sulfate depletion induced increased release of OMVs over cysteine depletion. Proteomics showed that sulfur depletion resulted in oxidative stress responses and upregulated phospholipid and LPS biosynthesis. Furthermore, OMVs produced by sulfur depletion were enriched in phospholipids. Mechanistically, we hypothesize that sulfur depletion results in overproduction of phospholipids causing increased bulging of the outer membrane and subsequent OMV release.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Cisteína/deficiência , Vacinas Meningocócicas , Neisseria meningitidis/metabolismo , Sulfatos/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/imunologia , Humanos , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/imunologia , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/prevenção & controle , Infecções Meningocócicas/virologia , Neisseria meningitidis/citologia , Neisseria meningitidis/imunologia , Estresse Oxidativo , Fosfolipídeos/análise , Fosfolipídeos/biossíntese , Proteômica , Óxidos de Enxofre
6.
J Extracell Vesicles ; 6(1): 1333883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717425

RESUMO

Outer membrane vesicles (OMVs) are spherical membrane nanoparticles released by Gram-negative bacteria. OMVs can be quantified in complex matrices by nanoparticle tracking analysis (NTA). NTA can be performed in static mode or with continuous sample flow that results in analysis of more particles in a smaller time-frame. Flow measurements must be performed manually despite the availability of a sample changer on the NanoSight system. Here we present a method for automated measurements in flow mode. OMV quantification in flow mode results in lower variance in particle quantification (coefficient of variation (CV) of 6%, CV static measurements of 14%). Sizing of OMVs was expected to be less favorable in flow mode due to the increased movement of the particles. However, we observed a CV of 3% in flow mode and a CV of 8% in static measurements. Flow rates of up to 5 µL/min displayed correct size and particle measurements, however, particle concentration was slightly lower than in static measurements. The automated method was used to assess OMV release of batch cultures of Neisseria meningitidis. The bacteria released more OMVs in stationary growth phase, while the size of the vesicles remained constant throughout the culture. Taken together, this study shows that automated measurements in flow mode can be established with advanced scripting to reduce the workload for the user.

7.
Biotechnol Adv ; 35(5): 565-574, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28522212

RESUMO

Outer membrane vesicles (OMVs) are naturally non-replicating, highly immunogenic spherical nanoparticles derived from Gram-negative bacteria. OMVs from pathogenic bacteria have been successfully used as vaccines against bacterial meningitis and sepsis among others and the composition of the vesicles can easily be engineered. OMVs can be used as a vaccine platform by engineering heterologous antigens to the vesicles. The major advantages of adding heterologous proteins to the OMV are that the antigens retain their native conformation, the ability of targeting specific immune responses, and a single production process suffices for many vaccines. Several promising vaccine platform concepts have been engineered based on decorating OMVs with heterologous antigens. This review discusses these vaccine concepts and reviews design considerations as the antigen location, the adjuvant function, physiochemical properties, and the immune response.


Assuntos
Antígenos/genética , Proteínas de Bactérias/genética , Vacinas Bacterianas/genética , Bioengenharia , Nanopartículas/química , Antígenos/uso terapêutico , Bactérias Gram-Negativas/genética , Nanopartículas/uso terapêutico , Vesículas Transportadoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA