Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Virol J ; 7: 76, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20412589

RESUMO

BACKGROUND: La Crosse virus (LACV) is a pathogenic arbovirus that is transovarially transmitted by Aedes triseriatus mosquitoes and overwinters in diapausing eggs. However, previous models predicted transovarial transmission (TOT) to be insufficient to maintain LACV in nature. RESULTS: To investigate this issue, we reared mosquitoes from field-collected eggs and assayed adults individually for LACV antigen, viral RNA by RT-PCR, and infectious virus. The mosquitoes had three distinct infection phenotypes: 1) super infected (SI+) mosquitoes contained infectious virus, large accumulations of viral antigen and RNA and comprised 17 of 17,825 (0.09%) of assayed mosquitoes, 2) infected mosquitoes (I+) contained no detectable infectious virus, lesser amounts of viral antigen and RNA, and comprised 3.7% of mosquitoes, and 3) non-infected mosquitoes (I-) contained no detectable viral antigen, RNA, or infectious virus and comprised 96.21% of mosquitoes. SI+ mosquitoes were recovered in consecutive years at one field site, suggesting that lineages of TOT stably-infected and geographically isolated Ae. triseriatus exist in nature. Analyses of LACV genomes showed that SI+ isolates are not monophyletic nor phylogenetically distinct and that synonymous substitution rates exceed replacement rates in all genes and isolates. Analysis of singleton versus shared mutations (Fu and Li's F*) revealed that the SI+ LACV M segment, with a large and significant excess of intermediate-frequency alleles, evolves through disruptive selection that maintains SI+ alleles at higher frequencies than the average mutation rate. A QTN in the LACV NSm gene was detected in SI+ mosquitoes, but not in I+ mosquitoes. Four amino acid changes were detected in the LACV NSm gene from SI+ but not I+ mosquitoes from one site, and may condition vector super infection. In contrast to NSm, the NSs sequences of LACV from SI+ and I+ mosquitoes were identical. CONCLUSIONS: SI+ mosquitoes may represent stabilized infections of Ae. triseriatus mosquitoes, which could maintain LACV in nature. A gene-for-gene interaction involving the viral NSm gene and a vector innate immune response gene may condition stabilized infection.


Assuntos
Aedes/virologia , Vírus La Crosse/isolamento & purificação , Substituição de Aminoácidos/genética , Animais , Antígenos Virais/isolamento & purificação , Feminino , Dados de Sequência Molecular , Polimorfismo Genético , RNA Viral/genética , RNA Viral/isolamento & purificação , Análise de Sequência de DNA
2.
Virol J ; 5: 164, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19114023

RESUMO

The evolutionary success of La Crosse virus (LACV, family Bunyaviridae) is due to its ability to adapt to changing conditions through intramolecular genetic changes and segment reassortment. Vertical transmission of LACV in mosquitoes increases the potential for segment reassortment. Studies were conducted to determine if segment reassortment was occurring in naturally infected Aedes triseriatus from Wisconsin and Minnesota in 2000, 2004, 2006 and 2007. Mosquito eggs were collected from various sites in Wisconsin and Minnesota. They were reared in the laboratory and adults were tested for LACV antigen by immunofluorescence assay. RNA was isolated from the abdomen of infected mosquitoes and portions of the small (S), medium (M) and large (L) viral genome segments were amplified by RT-PCR and sequenced. Overall, the viral sequences from 40 infected mosquitoes and 5 virus isolates were analyzed. Phylogenetic and linkage disequilibrium analyses revealed that approximately 25% of infected mosquitoes and viruses contained reassorted genome segments, suggesting that LACV segment reassortment is frequent in nature.


Assuntos
Vírus La Crosse/genética , Vírus Reordenados/genética , Aedes/virologia , Animais , Evolução Molecular , Feminino , Haplótipos , Vírus La Crosse/classificação , Vírus La Crosse/isolamento & purificação , Minnesota , Mutação , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA