Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(3): 644-658.e13, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607511

RESUMO

Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.


Assuntos
Imunidade Adaptativa/genética , Diarreia/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Rotavirus/microbiologia , Animais , Anti-Infecciosos/farmacologia , Bactérias/genética , Bactérias/metabolismo , Diarreia/prevenção & controle , Diarreia/virologia , Fezes/microbiologia , Regulação da Expressão Gênica/genética , Humanos , Íleo/microbiologia , Íleo/patologia , Íleo/virologia , Interferons/genética , Interleucina-17/genética , Interleucinas/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Microbiota/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Interleucina 22
2.
Cell ; 178(6): 1313-1328.e13, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491384

RESUMO

Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antivirais/imunologia , Microbioma Gastrointestinal/fisiologia , Imunidade/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Formação de Anticorpos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Masculino , Adulto Jovem
3.
Cell ; 175(3): 679-694.e22, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340040

RESUMO

Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Colestase/complicações , Fibras na Dieta/metabolismo , Disbiose/complicações , Fermentação , Microbioma Gastrointestinal , Neoplasias Hepáticas/etiologia , Animais , Carcinoma Hepatocelular/microbiologia , Linhagem Celular Tumoral , Colestase/microbiologia , Dieta Hiperlipídica/efeitos adversos , Disbiose/microbiologia , Inulina/efeitos adversos , Neoplasias Hepáticas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS Biol ; 21(9): e3002289, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37725584

RESUMO

Dietary emulsifiers, including carboxymethylcellulose (CMC) and polysorbate 80 (P80), perturb gut microbiota composition and gene expression, resulting in a microbiota with enhanced capacity to activate host pro-inflammatory gene expression and invade the intestine's inner mucus layer. Such microbiota alterations promote intestinal inflammation, which can have a variety of phenotypic consequences including increased adiposity. Bacterial flagellin is a key mediator of emulsifiers' impact in that this molecule enables motility and is itself a pro-inflammatory agonist. Hence, we reasoned that training the adaptive mucosal immune system to exclude microbes that express flagellin might protect against emulsifiers. Investigating this notion found that immunizing mice with flagellin elicited an increase in mucosal anti-flagellin IgA and IgA-coated microbiota that would have otherwise developed in response to CMC and P80 consumption. Yet, eliciting these responses in advance via flagellin immunization prevented CMC/P80-induced increases in microbiota expression of pro-inflammatory agonists including LPS and flagellin. Furthermore, such immunization prevented CMC/P80-induced microbiota encroachment and deleterious pro-inflammatory consequences associated therewith, including colon shortening and increased adiposity. Hence, eliciting mucosal immune responses to pathobiont surface components, including flagellin, may be a means of combatting the array of inflammatory diseases that are promoted by emulsifiers and perhaps other modern microbiota stressors.


Assuntos
Microbiota , Vacinação , Animais , Camundongos , Imunização , Dieta , Obesidade , Flagelina , Polissorbatos/farmacologia , Imunoglobulina A
6.
J Immunol ; 210(9): 1419-1427, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946775

RESUMO

TLR5, which is activated by flagellin, plays an important role in initiating immune response to a broad spectrum of motile bacterial pathogens. TLRs induce intracellular signaling via dimerization of their TIR domains followed by adapter recruitment through multiple interactions of receptor and adapter TIRs. Here, a library of cell-permeable decoy peptides derived from the TLR5 TIR was screened for TLR5 signaling inhibition in the HEK-Blue-mTLR5 reporter cell line. The peptide demonstrating the strongest inhibition, 5R667, corresponded to the second helix of the region between the third and fourth ß-strands (helix C″). In addition to the TLR5-induced cytokine expression, 5R667 inhibited cytokine expression elicited by TLR4, TLR2, and TLR9. 5R667 also suppressed the systemic cytokine induction elicited by LPS administration in mice. 5R667 binding specificity was studied by time-resolved fluorescence spectroscopy in a cell-based assay. 5R667 demonstrated a multispecific binding pattern with respect to TIR domains: It bound TIRs of TLR adapters of the MyD88-dependent pathway, Toll/interleukin-1 receptor domain-containing adapter protein/MyD88 adapter-like (TIRAP) and MyD88, and also the TIR of TLR5. TR667, the peptide derived from the TIRAP region, which is structurally homologous to 5R667, demonstrated binding and inhibitory properties similar to that of 5R667. The surface-exposed residues within TIR regions represented by 5R667 and TR667 form motifs, which are nearly 90% conserved in vertebrate evolution and are distinctive of TLR5 and TIRAP TIR domains. Thus, we have identified an evolutionary conserved adapter recruitment motif within TLR5 TIR, the function of which can be inhibited by selective cell-permeable decoy peptides, which can serve as pan-specific TLR inhibitors.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor 5 Toll-Like , Animais , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Peptídeos/metabolismo , Citocinas/metabolismo , Receptores de Interleucina-1/metabolismo
7.
Nature ; 563(7731): E25, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158704

RESUMO

In Fig. 1d of this Letter, the third group along should have been labelled 'WT' rather than 'Tlr5'. This has been corrected online.

8.
Nature ; 560(7719): 489-493, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089902

RESUMO

Alterations in enteric microbiota are associated with several highly prevalent immune-mediated and metabolic diseases1-3, and experiments involving faecal transplants have indicated that such alterations have a causal role in at least some such conditions4-6. The postnatal period is particularly critical for the development of microbiota composition, host-microbe interactions and immune homeostasis7-9. However, the underlying molecular mechanisms of this neonatal priming period have not been defined. Here we report the identification of a host-mediated regulatory circuit of bacterial colonization that acts solely during the early neonatal period but influences life-long microbiota composition. We demonstrate age-dependent expression of the flagellin receptor Toll-like receptor 5 (TLR5) in the gut epithelium of neonate mice. Using competitive colonization experiments, we demonstrate that epithelial TLR5-mediated REG3γ production is critical for the counter-selection of colonizing flagellated bacteria. Comparative microbiota transfer experiments in neonate and adult wild-type and Tlr5-deficient germ-free mice reveal that neonatal TLR5 expression strongly influences the composition of the microbiota throughout life. Thus, the beneficial microbiota in the adult host is shaped during early infancy. This might explain why environmental factors that disturb the establishment of the microbiota during early life can affect immune homeostasis and health in adulthood.


Assuntos
Envelhecimento/imunologia , Animais Recém-Nascidos/imunologia , Microbioma Gastrointestinal/imunologia , Receptor 5 Toll-Like/imunologia , Envelhecimento/genética , Animais , Animais Recém-Nascidos/genética , Cruzamentos Genéticos , Meio Ambiente , Feminino , Flagelina/imunologia , Flagelina/metabolismo , Microbioma Gastrointestinal/genética , Homeostase , Interações entre Hospedeiro e Microrganismos , Abrigo para Animais , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Receptor 5 Toll-Like/genética
9.
Gut ; 72(5): 906-917, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646449

RESUMO

BACKGROUND: Accumulating evidence indicates that some non-absorbed food additives, including emulsifiers carboxymethylcellulose (CMC) and polysorbate 80 (P80), can negatively impact intestinal microbiota, leading to microbiota encroachment, chronic low-grade intestinal inflammation and, subsequently, promotion of metabolic dysregulations. Detrimental impacts of emulsifier consumption on gut microbiota include depletion of the health-associated mucus-fortifying bacteria, Akkermansia muciniphila. OBJECTIVE: Investigate, in mice, the potential of administration of exogenous A. muciniphila as a means to protect against detrimental impacts of emulsifiers. RESULTS: Daily oral administration of A. muciniphila prevented phenotypic consequences of consumption of both CMC and P80, including hyperphagia, weight gain and dysglycaemia. A. muciniphila administration also counteracted the low-grade intestinal inflammation-induced CMC and P80. Furthermore, A. muciniphila supplementation prevented the proximal impacts of CMC and P80 on gut microbiota that are thought to drive low-grade chronic inflammation and metabolic dysregulations. Specifically, A. muciniphila prevented alterations in species composition and encroachment of gut microbiota that were otherwise induced by CMC and P80. Remarkably, we finally report that CMC and P80 altered the colonic transcriptome, while A. muciniphila largely protected against these alterations. CONCLUSION: Daily administration of A. muciniphila protects against the detrimental impact of emulsifiers on both the microbiota and host. These results support the notion that use of A. muciniphila as a probiotic can help maintain intestinal and metabolic health amidst the broad array of modern stresses that can promote chronic inflammatory diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Dieta , Inflamação/metabolismo , Verrucomicrobia
10.
Int J Cancer ; 153(1): 44-53, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878686

RESUMO

Gut barrier dysfunction can result in the liver being exposed to an elevated level of gut-derived bacterial products via portal circulation. Growing evidence suggests that systemic exposure to these bacterial products promotes liver diseases including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, prospective studies have not examined the association between biomarkers of gut barrier dysfunction and HCC risk in a population of hepatitis B or C viral (HBV/HCV) carriers. We investigated whether prediagnostic, circulating biomarkers of gut barrier dysfunction were associated with HCC risk, using the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-HBV and REVEAL-HCV cohorts from Taiwan. REVEAL-HBV included 185 cases and 161 matched controls, and REVEAL-HCV 96 cases and 96 matched controls. The biomarkers quantitated were immunoglobulin A (IgA), IgG, and IgM against lipopolysaccharide (LPS) and flagellin, soluble CD14 (an LPS coreceptor), and LPS-binding protein (LBP). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarker levels and HCC were calculated using multivariable-adjusted logistic regression. A doubling of the circulating levels of antiflagellin IgA or LBP was associated with a 76% to 93% increased risk of HBV-related HCC (OR per one unit change in log2 antiflagellin IgA = 1.76, 95% CI: 1.06-2.93; OR for LBP = 1.93, 95% CI: 1.10-3.38). None of the other markers were associated with an increased risk of HBV-related or HCV-related HCC. Results were similar when cases diagnosed in the first 5 years of follow-up were excluded. Our findings contribute to understanding the interplay of gut barrier dysfunction and primary liver cancer etiology.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Hepatite C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/epidemiologia , Neoplasias Hepáticas/epidemiologia , Vírus da Hepatite B , Estudos Prospectivos , Lipopolissacarídeos , Hepatite B/complicações , Hepatite B/epidemiologia , Estudos de Coortes , Biomarcadores , Imunoglobulina A , Hepatite C/complicações , Fatores de Risco
11.
Gastroenterology ; 162(3): 743-756, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774538

RESUMO

BACKGROUND & AIMS: Epidemiologic and murine studies suggest that dietary emulsifiers promote development of diseases associated with microbiota dysbiosis. Although the detrimental impact of these compounds on the intestinal microbiota and intestinal health have been demonstrated in animal and in vitro models, impact of these food additives in healthy humans remains poorly characterized. METHODS: To examine this notion in humans, we performed a double-blind controlled-feeding study of the ubiquitous synthetic emulsifier carboxymethylcellulose (CMC) in which healthy adults consumed only emulsifier-free diets (n = 9) or an identical diet enriched with 15 g per day of CMC (n = 7) for 11 days. RESULTS: Relative to control subjects, CMC consumption modestly increased postprandial abdominal discomfort and perturbed gut microbiota composition in a way that reduced its diversity. Moreover, CMC-fed subjects exhibited changes in the fecal metabolome, particularly reductions in short-chain fatty acids and free amino acids. Furthermore, we identified 2 subjects consuming CMC who exhibited increased microbiota encroachment into the normally sterile inner mucus layer, a central feature of gut inflammation, as well as stark alterations in microbiota composition. CONCLUSIONS: These results support the notion that the broad use of CMC in processed foods may be contributing to increased prevalence of an array of chronic inflammatory diseases by altering the gut microbiome and metabolome (ClinicalTrials.gov, number NCT03440229).


Assuntos
Carboximetilcelulose Sódica/efeitos adversos , Dieta/efeitos adversos , Emulsificantes/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Animais , Método Duplo-Cego , Disbiose/etiologia , Fezes , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos
12.
Gastroenterology ; 163(6): 1658-1671.e16, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988658

RESUMO

BACKGROUND & AIMS: Pathogenesis of hepatocellular carcinoma (HCC), which kills millions annually, is poorly understood. Identification of risk factors and modifiable determinants and mechanistic understanding of how they impact HCC are urgently needed. METHODS: We sought early prognostic indicators of HCC in C57BL/6 mice, which we found were prone to developing this disease when fed a fermentable fiber-enriched diet. Such markers were used to phenotype and interrogate stages of HCC development. Their human relevance was tested using serum collected prospectively from an HCC/case-control cohort. RESULTS: HCC proneness in mice was dictated by the presence of congenitally present portosystemic shunt (PSS), which resulted in markedly elevated serum bile acids (BAs). Approximately 10% of mice from various sources exhibited PSS/cholemia, but lacked an overt phenotype when fed standard chow. However, PSS/cholemic mice fed compositionally defined diets, developed BA- and cyclooxygenase-dependent liver injury, which was exacerbated and uniformly progressed to HCC when diets were enriched with the fermentable fiber inulin. Such progression to cholestatic HCC associated with exacerbated cholemia and an immunosuppressive milieu, both of which were required in that HCC was prevented by impeding BA biosynthesis or neutralizing interleukin-10 or programmed death protein 1. Analysis of human sera revealed that elevated BA was associated with future development of HCC. CONCLUSIONS: PSS is relatively common in C57BL/6 mice and causes silent cholemia, which predisposes to liver injury and HCC, particularly when fed a fermentable fiber-enriched diet. Incidence of silent PSS/cholemia in humans awaits investigation. Regardless, measuring serum BA may aid HCC risk assessment, potentially alerting select individuals to consider dietary or BA interventions.


Assuntos
Carcinoma Hepatocelular , Doenças do Sistema Digestório , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Neoplasias Hepáticas/etiologia , Carcinoma Hepatocelular/etiologia , Camundongos Endogâmicos C57BL , Próteses e Implantes , Fibras na Dieta
13.
PLoS Pathog ; 17(4): e1009497, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819308

RESUMO

Western-style diet (WSD), which is high in fat and low in fiber, lacks nutrients to support gut microbiota. Consequently, WSD reduces microbiota density and promotes microbiota encroachment, potentially influencing colonization resistance, immune system readiness, and thus host defense against pathogenic bacteria. Here we examined the impact of WSD on infection and colitis in response to Citrobacter rodentium. We observed that, relative to mice consuming standard rodent grain-based chow (GBC), feeding WSD starkly altered the dynamics of Citrobacter infection, reducing initial colonization and inflammation but frequently resulting in persistent infection that associated with low-grade inflammation and insulin resistance. WSD's reduction in initial Citrobacter virulence appeared to reflect that colons of GBC-fed mice contain microbiota metabolites, including short-chain fatty acids, especially acetate, that drive Citrobacter growth and virulence. Citrobacter persistence in WSD-fed mice reflected inability of resident microbiota to out-compete it from the gut lumen, likely reflecting the profound impacts of WSD on microbiota composition. These studies demonstrate potential of altering microbiota and their metabolites by diet to impact the course and consequence of infection following exposure to a gut pathogen.


Assuntos
Citrobacter rodentium/fisiologia , Colite/microbiologia , Dieta Ocidental , Infecções por Enterobacteriaceae/microbiologia , Microbioma Gastrointestinal , Animais , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Virulência
14.
Immunity ; 41(3): 478-492, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25220212

RESUMO

Systems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5(-/-) mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation directly and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination.


Assuntos
Formação de Anticorpos/imunologia , Vacinas contra Influenza/imunologia , Intestinos/microbiologia , Microbiota/imunologia , Receptor 5 Toll-Like/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Escherichia coli/imunologia , Flagelina/imunologia , Humanos , Memória Imunológica/imunologia , Influenza Humana/prevenção & controle , Intestinos/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Plasmócitos/metabolismo , Vacina Antipólio de Vírus Inativado/imunologia , Transdução de Sinais/imunologia , Receptor 5 Toll-Like/biossíntese , Receptor 5 Toll-Like/genética , Vacina contra Febre Amarela/imunologia
15.
Proc Natl Acad Sci U S A ; 117(35): 21519-21526, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817517

RESUMO

The intestinal epithelium is a highly dynamic structure that rejuvenates in response to acute stressors and can undergo alterations in cellular composition as animals age. The microbiota, acting via secreted factors related to indole, appear to regulate the sensitivity of the epithelium to stressors and promote epithelial repair via IL-22 and type I IFN signaling. As animals age, the cellular composition of the intestinal epithelium changes, resulting in a decreased proportion of goblet cells in the colon. We show that colonization of young or geriatric mice with bacteria that secrete indoles and various derivatives or administration of the indole derivative indole-3 aldehyde increases proliferation of epithelial cells and promotes goblet cell differentiation, reversing an effect of aging. To induce goblet cell differentiation, indole acts via the xenobiotic aryl hydrocarbon receptor to increase expression of the cytokine IL-10. However, the effects of indoles on goblet cells do not depend on type I IFN or on IL-22 signaling, pathways responsible for protection against acute stressors. Thus, indoles derived from the commensal microbiota regulate intestinal homeostasis, especially during aging, via mechanisms distinct from those used during responses to acute stressors. Indoles may have utility as an intervention to limit the decline of barrier integrity and the resulting systemic inflammation that occurs with aging.


Assuntos
Células Caliciformes/efeitos dos fármacos , Células Caliciformes/microbiologia , Indóis/farmacologia , Interleucina-10/metabolismo , Microbiota/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Envelhecimento/metabolismo , Animais , Bactérias/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Interleucina-10/biossíntese , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/metabolismo , Transdução de Sinais , Interleucina 22
16.
Proc Natl Acad Sci U S A ; 117(44): 27540-27548, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087566

RESUMO

Enteropathogenic bacterial infections are a global health issue associated with high mortality, particularly in developing countries. Efficient host protection against enteropathogenic bacterial infection is characterized by coordinated responses between immune and nonimmune cells. In response to infection in mice, innate immune cells are activated to produce interleukin (IL)-23 and IL-22, which promote antimicrobial peptide (AMP) production and bacterial clearance. IL-36 cytokines are proinflammatory IL-1 superfamily members, yet their role in enteropathogenic bacterial infection remains poorly defined. Using the enteric mouse pathogen, C.rodentium, we demonstrate that signaling via IL-36 receptor (IL-36R) orchestrates a crucial innate-adaptive immune link to control bacterial infection. IL-36R-deficient mice (Il1rl2-/- ) exhibited significant impairment in expression of IL-22 and AMPs, increased intestinal damage, and failed to contain C. rodentium compared to controls. These defects were associated with failure to induce IL-23 and IL-6, two key IL-22 inducers in the early and late phases of infection, respectively. Treatment of Il1rl2-/- mice with IL-23 during the early phase of C. rodentium infection rescued IL-22 production from group 3 innate lymphoid cells (ILCs), whereas IL-6 administration during the late phase rescued IL-22-mediated production from CD4+ T cell, and both treatments protected Il1rl2-/- mice from uncontained infection. Furthermore, IL-36R-mediated IL-22 production by CD4+ T cells was dependent upon NFκB-p65 and IL-6 expression in dendritic cells (DCs), as well as aryl hydrocarbon receptor (AhR) expression by CD4+ T cells. Collectively, these data demonstrate that the IL-36 signaling pathway integrates innate and adaptive immunity leading to host defense against enteropathogenic bacterial infection.


Assuntos
Imunidade Adaptativa , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/imunologia , Imunidade Inata , Receptores de Interleucina-1/metabolismo , Animais , Citrobacter rodentium/patogenicidade , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Interleucina-1/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Receptores de Interleucina-1/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
17.
Nutr Cancer ; 74(5): 1701-1711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34353196

RESUMO

Compelling animal studies report increased intestinal permeability, inflammation, and colorectal carcinogenesis with exposure to certain emulsifiers commonly added to processed foods, but human data are lacking. Highly processed food consumption is also associated with obesity and higher risk of chronic diseases. We cross-sectionally examined the association of emulsifier and highly processed food consumption estimated from six 24-h dietary recalls among 588 U.S. men and women over one year, with biomarkers of intestinal permeability and inflammation measured from two fasting blood samples collected six months apart. In multivariable-adjusted generalized linear models, greater emulsifier intake (g/d) was not associated with antibodies to flagellin (P-trend = 0.88), lipopolysaccharide (LPS) (P-trend = 0.56), or the combined total thereof (P-trend = 0.65) but was positively associated with an inflammatory biomarker, glycoprotein acetyls (GlycA) (P-trend = 0.02). Highly processed food intake (% kcal/d) was associated with higher anti-LPS antibodies (P-trend = 0.001) and total anti-flagellin and anti-LPS antibodies (P-trend = 0.005) but not with other biomarkers, whereas processed food intake expressed as % g/d was associated with higher GlycA (P-trend = 0.02). Our findings suggest that, broadly, highly processed food consumption may be associated with intestinal permeability biomarkers, and both emulsifier and highly processed food intakes may be associated with inflammation. Additional studies are warranted to further evaluate these relationships.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1957947.


Assuntos
Dieta , Neoplasias , Animais , Biomarcadores , Ingestão de Alimentos , Ingestão de Energia , Fast Foods , Feminino , Humanos , Inflamação , Permeabilidade
18.
J Infect Dis ; 223(8): 1478-1487, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32830227

RESUMO

BACKGROUND: Bacterial flagellin is a major target of innate and adaptive immunity, both of which can promote and/or compensate for deficiencies in each other's function. METHODS: To investigate the role of innate immune detection of flagellin irrespective of adaptive immunity, we examined the consequences of loss of Toll-like receptor 5 (T5) and/or Nod-like receptor 4 (N4) upon a Rag1-deficient background. RESULTS: Mice lacking Toll-like receptor 5 and Rag1 (T5/Rag-DKO) exhibited frequent lethal Pasteurellaceae-containing abscesses that prevented breeding of these mice. Mice lacking Toll-like receptor 5, Nod-like receptor 4, and Rag1 (T5/N4/Rag-TKO) also resulted in sporadic lethal abdominal abscesses caused by similar Pasteurellaceae. In the absence of such infections, relative to Rag1-KO, T5/N4/Rag-TKO mice exhibited microbiota encroachment, low-grade inflammation, microbiota dysbiosis, and, moreover were highly prone to Citrobacter infection and developed severe colitis when adoptively transferred with colitogenic T cells. Relative proneness of T5/N4/Rag-TKO mice to T-cell colitis was ablated by antibiotics while fecal microbiota transplant from T5/N4/Rag-TKO mice to wild-type mice transferred proneness to Citrobacter infection, indicating that dysbiosis in T5/N4/Rag-TKO mice contributed to these phenotypes. CONCLUSIONS: These results demonstrate a critical role for innate immune detection of flagellin, especially in the intestinal tract and particularly in hosts deficient in adaptive immunity.


Assuntos
Colite , Flagelina/imunologia , Proteínas de Homeodomínio , Imunidade Inata , Proteínas NLR , Receptor 5 Toll-Like , Imunidade Adaptativa , Animais , Disbiose , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas NLR/genética , Receptor 5 Toll-Like/genética
19.
Nature ; 519(7541): 92-6, 2015 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-25731162

RESUMO

The intestinal tract is inhabited by a large and diverse community of microbes collectively referred to as the gut microbiota. While the gut microbiota provides important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multi-layered mucus structures that cover the intestinal surface, thereby allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro, might be promoting the increase in inflammatory bowel disease observed since the mid-twentieth century. Here we report that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in wild-type hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition and increased pro-inflammatory potential. Use of germ-free mice and faecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that the broad use of emulsifying agents might be contributing to an increased societal incidence of obesity/metabolic syndrome and other chronic inflammatory diseases.


Assuntos
Colite/induzido quimicamente , Colite/microbiologia , Dieta/efeitos adversos , Emulsificantes/efeitos adversos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/microbiologia , Adiposidade/efeitos dos fármacos , Animais , Carboximetilcelulose Sódica/administração & dosagem , Carboximetilcelulose Sódica/efeitos adversos , Colite/patologia , Emulsificantes/administração & dosagem , Fezes/microbiologia , Feminino , Trato Gastrointestinal/patologia , Vida Livre de Germes , Inflamação/induzido quimicamente , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Síndrome Metabólica/patologia , Camundongos , Microbiota/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/microbiologia , Obesidade/patologia , Polissorbatos/administração & dosagem , Polissorbatos/efeitos adversos
20.
Mol Cell Proteomics ; 18(9): 1864-1879, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31262998

RESUMO

Consumption of refined high-fat, low-fiber diets promotes development of obesity and its associated consequences. Although genetics play an important role in dictating susceptibility to such obesogenic diets, mice with nearly uniform genetics exhibit marked heterogeneity in their extent of obesity in response to such diets. This suggests non-genetic determinants play a role in diet-induced obesity. Hence, we sought to identify parameters that predict, and/or correlate with, development of obesity in response to an obesogenic diet. We assayed behavior, metabolic parameters, inflammatory markers/cytokines, microbiota composition, and the fecal metaproteome, in a cohort of mice (n = 50) prior to, and the 8 weeks following, administration of an obesogenic high-fat low-fiber diet. Neither behavioral testing nor quantitation of inflammatory markers broadly predicted severity of diet-induced obesity. Although, the small subset of mice that exhibited basal elevations in serum IL-6 (n = 5) were among the more obese mice in the cohort. While fecal microbiota composition changed markedly in response to the obesogenic diet, it lacked the ability to predict which mice were relative prone or resistant to obesity. In contrast, fecal metaproteome analysis revealed functional and taxonomic differences among the proteins associated with proneness to obesity. Targeted interrogation of microbiota composition data successfully validated the taxonomic differences seen in the metaproteome. Although future work will be needed to determine the breadth of applicability of these associations to other cohorts of animals and humans, this study nonetheless highlights the potential power of gut microbial proteins to predict and perhaps impact development of obesity.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Obesidade/etiologia , Proteoma/metabolismo , Animais , Composição Corporal , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Feminino , Flagelina/metabolismo , Microbioma Gastrointestinal/genética , Imunoglobulina A/sangue , Mediadores da Inflamação/metabolismo , Lipocalina-2/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/microbiologia , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Proteoma/análise , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA