Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Microsc ; 282(3): 250-257, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33442878

RESUMO

Inelastic mean free path (IMFP) of the electron is a very important parameter for quantitative analysis of several electron spectroscopies and transport properties. In spite of being a fundamental material property, its experimental determination is not trivial due to complexity of the various electron scattering processes in matter. In this report, we demonstrate a procedure to determine the IMFP of 300 keV electrons in GaN, using the log-ratio technique where the local specimen thickness needs to be accurately known. The GaN nanorod morphology of the sample used here allows the accurate measurement of thickness by 'thickness map' under EFTEM measurements which enable the site specific determination of IMFP. IMFP for different collection semi angles have also been measured to validate the angular dependence. Our experimental results estimates the IMFP of GaN for 300 keV electrons to be 143 ± 11 nm at no-aperture condition and exhibit a strong inverse angular dependence at smaller collection semi angles (ß < 20 mrad) and a near angular independence at larger collection semi angles (ß > 30 mrad). We discuss these results in the light of three different theoretical models prevalent in the literature.


The inelastic mean free path (IMFP) of electrons is defined as the average distance traveled between two successive inelastic collisions by an electron moving with a particular energy in a given material. It is a very fundamental material parameter for surface science and description of electron transport processes in solids. IMFP is particularly useful for quantifying several electron spectroscopies such as Auger electron spectroscopy, X-ray photoelectron spectroscopy, electron energy loss (EEL) spectroscopy and elastic peak electron spectroscopy etc. However, it is difficult to determine IMFP experimentally or theoretically as the interaction process has strong angular dependence that varies with electron energy, density and dielectric properties of the material. Particularly for EEL which is carried out in TEM at using electron with few hundred kilovolts, knowledge of IMFP at those high energies is required. In this report, we demonstrate a general procedure to determine IMFP of 300 keV electrons in Gallium Nitride inside TEM. Single crystalline Gallium Nitride nanorod has just been taken as an example to demonstrate the process. The procedure can be extended to any other materials of both crystalline and amorphous in nature.

2.
Nano Lett ; 19(8): 5703-5709, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31347854

RESUMO

Ultrathin ferroelectric semiconductors with high charge carrier mobility are much coveted systems for the advancement of various electronic and optoelectronic devices. However, in traditional oxide ferroelectric insulators, the ferroelectric transition temperature decreases drastically with decreasing material thickness and ceases to exist below certain critical thickness owing to depolarizing fields. Herein, we show the emergence of an ordered ferroelectric ground state in ultrathin (∼2 nm) single crystalline nanosheets of Bi2O2Se at room temperature. Free-standing ferroelectric nanosheets, in which oppositely charged alternating layers are self-assembled together by electrostatic interactions, are synthesized by a simple, rapid, and scalable wet chemical procedure at room temperature. The existence of ferroelectricity in Bi2O2Se nanosheets is confirmed by dielectric measurements and piezoresponse force spectroscopy. The spontaneous orthorhombic distortion in the ultrathin nanosheets breaks the local inversion symmetry, thereby resulting in ferroelectricity. The local structural distortion and the formation of spontaneous dipole moment were directly probed by atomic resolution scanning transmission electron microscopy and density functional theory calculations.

3.
Phys Chem Chem Phys ; 20(27): 18391-18399, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943784

RESUMO

Gas sensors at low operating temperature with high sensitivity require group III nitrides owing to their high chemical and thermal stabilities. For the first time, Al0.07Ga0.93N nanowires (NWs) have been utilized in CH4 sensing, and it has been demonstrated that they exhibit an improved response compared to GaN NWs at the low operating temperature of 50 °C. Al0.07Ga0.93N NWs have been synthesized via the ion beam mixing process using inert gas ion irradiation on the bilayer of Al/GaN NWs. The sensing mechanism is explained with the help of native defects present in the system. The number of shallow acceptors created by Ga vacancies (VGa) is found to be higher in Al0.07Ga0.93N NWs than in as-grown GaN NWs. The role of the O antisite defect (ON) for the formation of shallow VGa is inferred from photoluminescence spectroscopic analysis. These native defects strongly influence the gas sensing behaviour, which results in enhanced and low-temperature CH4 sensing.

4.
Chemistry ; 23(31): 7438-7443, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436062

RESUMO

Waste heat sources are generally diffused and provide a range of temperatures rather than a particular temperature. Thus, thermoelectric waste heat to electricity conversion requires a high average thermoelectric figure of merit (ZTavg ) of materials over the entire working temperature along with a high peak thermoelectric figure of merit (ZTmax ). Herein an ultrahigh ZTavg of 1.4 for (GeTe)80 (AgSbSe2 )20 [TAGSSe-80, T=tellurium, A=antimony, G=germanium, S=silver, Se=selenium] is reported in the temperature range of 300-700 K, which is one of the highest values measured amongst the state-of-the-art Pb-free polycrystalline thermoelectric materials. Moreover, TAGSSe-80 exhibits a high ZTmax of 1.9 at 660 K, which is reversible and reproducible with respect to several heating-cooling cycles. The high thermoelectric performance of TAGSSe-x is attributed to extremely low lattice thermal conductivity (κlat ), which mainly arises due to extensive phonon scattering by hierarchical nano/meso-structures in the TAGSSe-x matrix. Addition of AgSbSe2 in GeTe results in κlat of ≈0.4 W mK-1 in the 300-700 K range, approaching to the theoretical minimum limit of lattice thermal conductivity (κmin ) of GeTe. Additionally, (GeTe)80 (AgSbSe2 )20 exhibits a higher Vickers microhardness (mechanical stability) value of ≈209 kgf mm-2 compared to the other state-of-the-art metal chalcogenides, making it an important material for thermoelectrics.

5.
Phys Chem Chem Phys ; 15(12): 4291-6, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23407721

RESUMO

The important problem of how to generate lateral order for ion implantation patterning of substrates is solved by using a nanoporous anodic alumina membrane as a mask. Co and Pt implantation is used at two implantation doses. In order to observe the achieved implantation zones free from artifacts, electron transparent thin nitride and oxide films are used as substrates, which allows the quality of pattern transfer from the mask to the thin film to be assessed by plan-view transmission electron microscopy. Characteristic density variations of implanted elements across projected pore-regions of the mask, such as ring and dome shapes, and corresponding variation of cluster size are discussed, and therefore the method also serves as a suitable test bed for ion beam focusing studies by cylindrical or conical pores.

6.
Nanotechnology ; 23(4): 045605, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22222442

RESUMO

Spatially patterned ion beam implantation of 190 keV Co(+) ions into a SiO(2) thin film on a Si substrate has been achieved by using nanoporous anodic aluminum oxide with a pore diameter of 125 nm as a mask. The successful synthesis of periodic embedded Co regions using pattern transfer is demonstrated for the first time using cross-sectional (scanning) transmission electron microscopy (TEM) in combination with analytical TEM. Implanted Co regions are found at the correct relative lateral periodicity given by the mask and at a depth of about 120 nm.

7.
J Nanosci Nanotechnol ; 11(4): 3180-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776685

RESUMO

Nano-ribbons and very small nanoparticles (size 2-5 nm) of SbPO4 doped with lanthanide ions (Ce3+ and Tb3+) are prepared at a relatively low temperature of 120 degrees C based on a solution method. Detailed vibrational and luminescence studies on these samples establish that these lanthanide ions are incorporated at Sb3+ site of the SbPO4 lattice. The excitation spectrum corresponding to the Tb3+ emission and the excited state lifetime of the 5D4 level of Tb3+ ions in the sample confirm the energy transfer from Ce3+ to Tb3+ ions in the SbPO4 host. The extent of energy transfer from Ce3+ to Tb3+ in these samples is found to be around 60%. Dispersion of these nanomaterials in silica matrix effectively shields the lanthanide ions at the surface of the nano-ribbons/nanoparticles from the stabilizing ligands resulting in the reduction in the vibronic quenching of the excited state. Our results show significant reduction in the surface contribution in the decay curve corresponding to the 5D4 level of the Tb3+ ions after incorporating the nano-ribbons/nanoparticles in silica. These nanomaterials incorporated in silica matrix can have potential applications in bio-assays and bio-imaging.


Assuntos
Cério/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Espectrometria de Fluorescência/métodos , Polifosfatos de Estanho/química , Medições Luminescentes , Teste de Materiais , Tamanho da Partícula
8.
J Nanosci Nanotechnol ; 10(2): 755-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20352714

RESUMO

The stability of embedded Indium (In) nanoclusters (NCs) in silica under thermal annealing and ion irradiation was investigated. The In NCs were prepared by implantation of 890 keV indium ions in silica matrix at room temperature. Post implantation annealing resulted in the shifting of the size distribution to higher side. On the other hand 140 keV Nitrogen ion irradiation at elevated temperature resulted in the reduction of NCs size, with significant narrowing of the size distribution. The paper discusses the results of the study in the light of the models pertaining to the stability of NCs under ion irradiation conditions.

9.
Nanotechnology ; 20(46): 465601, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19843987

RESUMO

Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

10.
J Nanosci Nanotechnol ; 7(2): 677-88, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17450814

RESUMO

CdS nanorods with varying dimensions were synthesized by solvothermal process. It was observed that the anions present with the Cd-salts play an important role in determining the dimensions of the CdS nanorods. The crystalline nature of the sources was found to play a crucial role in determining the phase of the products. The nature of the sulfur source, molar ratio of the precursors, filling fraction of the solvent, and the synthesis temperature play important role in defining the size and shape of the products. By controlling the experimental parameters it was possible to control the dimension of the CdS nanorods within a certain range (diameter of the nanorods could be varied within a wide range from approximately 7 to 100 nm by varying the temperature within 100-250 degrees C). Optical absorption, photoluminescence, and Raman studies of these samples were carried out to characterize the CdS nanorods.


Assuntos
Compostos de Cádmio/síntese química , Etanol/química , Nanotecnologia/métodos , Nanotubos/química , Solventes/química , Sulfetos/síntese química , Compostos de Cádmio/análise , Compostos de Cádmio/química , Cristalização , Temperatura Alta , Luz , Luminescência , Medições Luminescentes/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos/ultraestrutura , Fotoquímica/métodos , Espectrofotometria Ultravioleta , Análise Espectral Raman , Sulfetos/análise , Sulfetos/química , Ultrassom , Difração de Raios X
11.
ACS Appl Mater Interfaces ; 9(44): 38931-38942, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29019387

RESUMO

Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V µm-1) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V µm-1. The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.

12.
ACS Omega ; 2(8): 5150-5158, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457790

RESUMO

Heterojunction nanorods having dissimilar semiconductors possess charge transfer (CT) properties and are proposed as active elements in optoelectronic systems. Herein, we describe the synthetic methodologies for controlling the charge carrier recombination dynamics in CdSe-CdTe heterojunction nanorods through the precise growth of CdTe segment from one of the tips of CdSe nanorods. The location of heterojunction was established through a point-by-point collection of the energy-dispersive X-ray spectra using scanning transmission electron microscopy. The possibilities of the growth of CdTe from both the tips of CdSe nanorods and the overcoating of CdTe over CdSe segment were also ruled out. The CT emission in the heterojunction nanorods originates through an interfacial excitonic recombination and was further tuned to the near-infrared region by varying the two parameters: the aspect ratio of CdSe and the length of CdTe segment. These aspects are evidenced from the emission lifetime and the femtosecond transient absorption studies.

13.
Nanoscale ; 8(1): 634-40, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646378

RESUMO

Surface free energy, as an intrinsic property, is essential in determining the morphology of materials, but it is extremely difficult to determine experimentally. We report on the derivation of the SE of different facets of ZnO and GaN experimentally from the holes developed using electron beam drilling with transmission electron microscopy. Inverse Wullf's construction is employed to obtain polar maps of the SE of different facets to study different nanomaterials (ZnO and GaN) in different morphologies (nanorod, nanobelt and thin film) to prove its versatility and capability. The results show that the SE of ZnO{10-13} is derived to be 0.99 J m(-2), and the SE of ZnO{10-10} is found to be less than {0002} and {11-20}. A GaN thin film also exhibits a similar trend in the SE of different facets as ZnO and the SE of GaN{10-13} is determined to be 1.36 J m(-2).

14.
J Nanosci Nanotechnol ; 5(4): 596-600, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16004125

RESUMO

Nickel nanorods with diameters ranging from 5 to 10 nm, encapsulated inside the carbon nanotubes, are prepared using microwave plasma chemical vapor deposition. High-resolution transmission electron microscopy (HRTEM) studies reveal the perfect crystalline nature of the rods with d-spacing closely matching the (111) interplanar spacing of Ni. The (111) planes of the Ni nanorods are always aligned at 39.6 degrees with respect to the graphite planes of the nanotubes. The cosine component of the d-spacing along the direction of the graphite planes is found to be 1.6 A; exactly half the d-spacing between the graphite planes. The electron diffraction pattern shows clear spots corresponding to Ni structure. The field cooled and zero field cooled magnetization data reveal the reversibility of the magnetization of the Ni nanorods and show a blocking temperature of 195 K, which correspond to energy barrier of 0.4 eV/(V).


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos/química , Níquel/química , Carbono/química , Catálise , Cristalização , Elétrons , Substâncias Macromoleculares , Magnetismo , Microscopia Eletrônica de Transmissão , Temperatura
15.
Sci Rep ; 5: 12533, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26211998

RESUMO

The island nucleation in the context of heterogeneous thin film growth is often complicated by the growth kinetics involved in the subsequent thermodynamics. We show how the evolution of sputtered Zn island nucleation on Si(111) by magnetron sputtering in a large area can be completely understood as a model system by combining reflective second harmonic generation (RSHG), a 2D pole figure with synchrotron X-ray diffraction. Zn dots are then oxidized on the surfaces when exposed to the atmosphere as Zn/ZnO dots. Derived from the RSHG patterns of Zn dots at different growth times, the Zn dots grow following a unique transition from kinetic to thermodynamic control. Under kinetic-favoring growth, tiny Zn dots prefer arranging themselves with a tilted c-axis to the Si(111) substrate toward any of the sixfold in-plane Si<110> directions. Upon growth, the Zn dots subsequently evolve themselves to a metastable state with a smaller tilting angle toward selective <110> directions. As the Zn dots grow over a critical size, they become most thermodynamically stable with the c-axis vertical to the Si(111) substrate. For a system with large lattice mismatch, small volume dots take kinetic pathways with insignificant deviations in energy barriers.

16.
Nanoscale ; 4(5): 1754-9, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22318611

RESUMO

Lithium fluoride crystals were subjected to electron beam irradiation at 200 and 300 keV using transmission electron microscopy in order to study in situ fabrication of Li nanostructures. We observed that LiF crystals decompose in a unique way different to all other metal halides: Fluorine ablation and salt-to-metal conversion is non-local and due to a rapid lateral diffusion of Li, the life cycle from nucleation to annihilation of fresh Li nano-crystals can be observed at a distance from the Li-source, the irradiated salt. Growth, shape transition and annihilation of Li nanostructures follow at slow enough speed for live video recording with resolution of 25 frames per second. The equilibrium shapes of pure Li nano-crystals range from cubic to rod-shaped and ball-shaped and up to 300 nm size. By varying the e-beam flux of irradiation, transitions from cube to spherical shape can be induced cyclically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA