Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(27): E3960-6, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27325773

RESUMO

Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.


Assuntos
Simulação de Dinâmica Molecular , Transportador 1 de Glucose-Sódio/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Cadeias de Markov , Método de Monte Carlo , Técnicas de Patch-Clamp , Sódio/metabolismo
2.
Diabetologia ; 61(10): 2087-2097, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30132032

RESUMO

The concentration of glucose in plasma is held within narrow limits (4-10 mmol/l), primarily to ensure fuel supply to the brain. Kidneys play a role in glucose homeostasis in the body by ensuring that glucose is not lost in the urine. Three membrane proteins are responsible for glucose reabsorption from the glomerular filtrate in the proximal tubule: sodium-glucose cotransporters SGLT1 and SGLT2, in the apical membrane, and GLUT2, a uniporter in the basolateral membrane. 'Knockout' of these transporters in mice and men results in the excretion of filtered glucose in the urine. In humans, intravenous injection of the plant glucoside phlorizin also results in excretion of the full filtered glucose load. This outcome and the finding that, in an animal model, phlorizin reversed the symptoms of diabetes, has stimulated the development and successful introduction of SGLT2 inhibitors, gliflozins, in the treatment of type 2 diabetes mellitus. Here we summarise the current state of our knowledge about the physiology of renal glucose handling and provide background to the development of SGLT2 inhibitors for type 2 diabetes treatment.


Assuntos
Transportador de Glucose Tipo 2/fisiologia , Glucose/metabolismo , Rim/metabolismo , Transportador 1 de Glucose-Sódio/fisiologia , Transportador 2 de Glucose-Sódio/fisiologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Desenho de Fármacos , Transportador de Glucose Tipo 2/genética , Glicosúria/metabolismo , Células HEK293 , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Túbulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Knockout , Florizina/farmacologia , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
3.
J Physiol ; 596(13): 2473-2489, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29707805

RESUMO

KEY POINTS: The goal was to determine the importance of the sodium-glucose cotransporter SGLT1 and the glucose uniporter GLUT2 in intestinal glucose absorption during oral glucose tolerance tests (OGTTs) in mice. Glucose absorption was determined in mice using positron emission tomography and three non-metabolizable glucose probes: one specific for SGLTs, one specific for GLUTs, and one a substrate for both SGLTs and GLUTs. Absorption was determined in wild-type, Sglt1-/- and Glut2-/- mice. Gastric emptying was a rate-limiting step in absorption. SGLT1, but not GLUT2, was important in fast glucose absorption. In the absence of SGLT1 or GLUT2, the oral glucose load delivered to the small intestine was slowly absorbed. Oral phlorizin only inhibited the fast component of glucose absorption, but it contributed to decreasing blood glucose levels by inhibiting renal reabsorption. ABSTRACT: The current model of intestinal absorption is that SGLT1 is responsible for transport of glucose from the lumen into enterocytes across the brush border membrane, and GLUT2 for the downhill transport from the epithelium into blood across the basolateral membrane. Nevertheless, questions remain about the importance of these transporters in vivo. To address these questions, we have developed a non-invasive imaging method, positron emission tomography (PET), to monitor intestinal absorption of three non-metabolized glucose tracers during standard oral glucose tolerance tests (OGTTs) in mice. One tracer is specific for SGLTs (α-methyl-4-[18 F]fluoro-4-deoxy-d-glucopyranoside; Me-4FDG), one is specific for GLUTs (2-deoxy-2-[18 F]fluoro-d-glucose; 2-FDG), and one is a substrate for both SGLTs and GLUTs (4-deoxy-4-[18 F]fluoro-d-glucose; 4-FDG). OGTTs were conducted on adult wild-type, Sglt1-/- and Glut2-/- mice. In conscious mice, OGTTs resulted in the predictable increase in blood glucose that was blocked by phlorizin in both wild-type and Glut2-/- animals. The blood activity of both Me-4FDG and 4-FDG, but not 2-FDG, accompanied the changes in glucose concentration. PET imaging during OGTTs further shows that: (i) intestinal absorption of the glucose load depends on gastric emptying; (ii) SGLT1 is important for the fast absorption; (iii) GLUT2 is not important in absorption; and (iv) oral phlorizin reduces absorption by SGLT1, but is absorbed and blocks glucose reabsorption in the kidney. We conclude that in standard OGTTs in mice, SGLT1 is essential in fast absorption, GLUT2 does not play a significant role, and in the absence of SGLT1 the total load of glucose is slowly absorbed.


Assuntos
Glucose/metabolismo , Absorção Intestinal , Intestino Delgado/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Transporte Biológico , Feminino , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 2/metabolismo , Intestino Delgado/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportador 1 de Glucose-Sódio/metabolismo
4.
Physiology (Bethesda) ; 32(6): 435-443, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021363

RESUMO

It has been 30 years since the intestinal sodium glucose cotransporter SGLT1 was cloned, and, in the intervening years, there have been many advances that have influenced physiology and medicine. Among the first was that SGLT1 is the founding member of the human gene family SLC5, containing 11 diverse transporters and a glucose sensor. Equally surprising was that SGLTs are members of a structural family of cotransporters and exchangers in different gene families. This led to the conclusion that these proteins operate by a mechanism where transport involves the opening and closing of external and internal gates. The mechanism is shared by a wide variety of transporters in different structural families, e.g., the human facilitated glucose transporters (SLC2) in the huge major facilitator superfamily (MFS). Not surprising is the finding that mutations in Sglt genes cause the rare diseases glucose-galactose-malabsorption (GGM) and familial renal glucosuria (FRG). However, it was not envisaged that SGLT inhibitors would be used to treat diabetes mellitus, and these drugs may be able to treat cancer. Finally, in 2017, we have just learned that SGLT1 may be required to resist infection and to avoid recurrent pregnancy loss.


Assuntos
Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Glucose/genética , Glucose/metabolismo , Humanos , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(30): E4111-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170283

RESUMO

Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy.


Assuntos
Neoplasias Pancreáticas/metabolismo , Neoplasias da Próstata/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Adenocarcinoma/metabolismo , Animais , Transporte Biológico , Feminino , Radioisótopos de Flúor/química , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucosídeos/química , Humanos , Imuno-Histoquímica , Rim/metabolismo , Masculino , Camundongos , Necrose , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose
6.
J Am Soc Nephrol ; 28(3): 802-810, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27620988

RESUMO

Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules via sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[18F]fluoro-dapagliflozin (F-Dapa). We detected prominent binding of intravenously injected F-Dapa in the kidney cortexes of rats and wild-type and Sglt1-knockout mice but not Sglt2-knockout mice, and injection of SGLT2 inhibitors prevented this binding. Furthermore, imaging revealed only low levels of F-Dapa in the urinary bladder, even after displacement of kidney binding with dapagliflozin. Microscopic ex vitro autoradiography of kidney showed F-Dapa binding to the apical surface of early proximal tubules. Notably, in vivo imaging did not show measureable specific binding of F-Dapa in heart, muscle, salivary glands, liver, or brain. We propose that F-Dapa is freely filtered by the kidney, binds to SGLT2 in the apical membranes of the early proximal tubule, and is subsequently reabsorbed into blood. The high density of functional SGLT2 transporters detected in the apical membrane of the proximal tubule but not detected in other organs likely accounts for the high kidney specificity of SGLT2 inhibitors. Overall, these data are consistent with data from clinical studies on SGLT2 inhibitors and provide a rationale for the mode of action of these drugs.


Assuntos
Compostos Benzidrílicos/metabolismo , Glucosídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
7.
Blood ; 125(14): 2254-64, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25575540

RESUMO

We present a programmable bioengineered 3-dimensional silk-based bone marrow niche tissue system that successfully mimics the physiology of human bone marrow environment allowing us to manufacture functional human platelets ex vivo. Using stem/progenitor cells, megakaryocyte function and platelet generation were recorded in response to variations in extracellular matrix components, surface topography, stiffness, coculture with endothelial cells, and shear forces. Millions of human platelets were produced and showed to be functional based on multiple activation tests. Using adult hematopoietic progenitor cells our system demonstrated the ability to reproduce key steps of thrombopoiesis, including alterations observed in diseased states. A critical feature of the system is the use of natural silk protein biomaterial allowing us to leverage its biocompatibility, nonthrombogenic features, programmable mechanical properties, and surface binding of cytokines, extracellular matrix components, and endothelial-derived proteins. This in turn offers new opportunities for the study of blood component production ex vivo and provides a superior tissue system for the study of pathologic mechanisms of human platelet production.


Assuntos
Plaquetas/citologia , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Mielofibrose Primária/patologia , Seda/química , Alicerces Teciduais/química , Adulto , Animais , Plaquetas/metabolismo , Bombyx , Células da Medula Óssea/metabolismo , Células Cultivadas , Técnicas de Cocultura , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Matriz Extracelular , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Megacariócitos/metabolismo , Mielofibrose Primária/metabolismo , Trombopoese/fisiologia , Engenharia Tecidual
8.
J Physiol ; 594(15): 4425-38, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27018980

RESUMO

KEY POINTS: Glucose transporters are central players in glucose homeostasis. There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium-coupled glucose transporters (SGLTs). In the present study, we report the use of a non-invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization. We show that GLUTs are most significant for glucose uptake into the brain and liver, whereas SGLTs are important in glucose recovery in the kidney. This work provides further support for the use of SGLT imaging in the investigation of the role of SGLT transporters in human physiology and diseases such as diabetes and cancer. ABSTRACT: The importance of sodium-coupled glucose transporters (SGLTs) and facilitative glucose transporters (GLUTs) in glucose homeostasis was studied in mice using fluorine-18 labelled glucose molecular imaging probes and non-invasive positron emission tomography (PET) imaging. The probes were: α-methyl-4-[F-18]-fluoro-4-deoxy-d-glucopyranoside (Me-4FDG), a substrate for SGLTs; 4-deoxy-4-[F-18]-fluoro-d-glucose (4-FDG), a substrate for SGLTs and GLUTs; and 2-deoxy-2-[F-18]-fluoro-d-glucose (2-FDG), a substrate for GLUTs. These radiolabelled imaging probes were injected i.v. into wild-type, Sglt1(-/-) , Sglt2(-/-) and Glut2(-/-) mice and their dynamic whole-body distribution was determined using microPET. The distribution of 2-FDG was similar to that reported earlier (i.e. it accumulated in the brain, heart, liver and kidney, and was excreted into the urinary bladder). There was little change in the distribution of 2-FDG in Glut2(-/-) mice, apart from a reduction in the rate of uptake into liver. The major differences between Me-4FDG and 2-FDG were that Me-4FDG did not enter the brain and was not excreted into the urinary bladder. There was urinary excretion of Me-4FDG in Sglt1(-/-) and Sglt2(-/-) mice. However, Me-4FDG was not reabsorbed in the kidney in Glut2(-/-) mice. There were no differences in Me-4FDG uptake into the heart of wild-type, Sglt1(-/-) and Sglt2(-/-) mice. We conclude that GLUT2 is important in glucose liver transport and reabsorption of glucose in the kidney along with SGLT2 and SGLT1. Complete reabsorption of Me-4FDG from the glomerular filtrate in wild-type mice and the absence of reabsorption in the kidney in Glut2(-/-) mice confirm the importance of GLUT2 in glucose absorption across the proximal tubule.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Desoxiglucose/análogos & derivados , Feminino , Radioisótopos de Flúor , Glucose/farmacocinética , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucosídeos , Coração/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos/diagnóstico por imagem , Músculos/metabolismo , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas de Transporte de Sódio-Glucose/genética , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/metabolismo
9.
Int J Mol Sci ; 16(9): 20511-22, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26343650

RESUMO

Tissues in the body are hierarchically structured composite materials with tissue-specific properties. Urea self-assembles via hydrogen bonding interactions into crystalline supracolloidal assemblies that can be used to impart macroscopic pores to polymer-based tissue scaffolds. In this communication, we explain the solvent interactions governing the solubility of urea and thereby the scope of compatible polymers. We also highlight the role of solvent interactions on the morphology of the resulting supracolloidal crystals. We elucidate the role of polymer-urea interactions on the morphology of the pores in the resulting biomaterials. Finally, we demonstrate that it is possible to use our urea templating methodology to prepare Bombyx mori silk protein-based biomaterials with pores that human dermal fibroblasts respond to by aligning with the long axis of the pores. This methodology has potential for application in a variety of different tissue engineering niches in which cell alignment is observed, including skin, bone, muscle and nerve.


Assuntos
Materiais Biocompatíveis/química , Seda/química , Coloides , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Porosidade , Solubilidade , Solventes/química , Alicerces Teciduais/química , Ureia/química
10.
Am J Physiol Cell Physiol ; 306(9): C864-70, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24573086

RESUMO

Sodium glucose cotransporters (SGLTs) mediate the translocation of carbohydrates across the brush border membrane of different organs such as intestine, kidney, and brain. The human SGLT5 (hSGLT5), in particular, is localized in the kidney were it is responsible for mannose and fructose reabsorption from the glomerular filtrate as confirmed by more recent studies on hSGLT5 knockout mice. Here we characterize the functional properties of hSGLT5 expressed in a stable T-Rex-HEK-293 cell line using biochemical and electrophysiological assays. We confirmed that hSGLT5 is a sodium/mannose transporter that is blocked by phlorizin. Li(+) and H(+) ions were also able to drive mannose transport, and transport was electrogenic. Our results moreover indicate that substrates require a pyranose ring with an axial hydroxyl group (-OH) on carbon 2 (C-2). Compared with Na(+)/glucose cotransport, the level of function of Na(+)/mannose cotransport in rat kidney slices was low.


Assuntos
Rim/metabolismo , Manose/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Sódio/metabolismo , Animais , Cátions , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Rim/efeitos dos fármacos , Cinética , Lítio/metabolismo , Potenciais da Membrana , Estrutura Molecular , Florizina/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte de Sódio-Glucose/antagonistas & inibidores , Proteínas de Transporte de Sódio-Glucose/genética , Transfecção
11.
Adv Healthc Mater ; 13(3): e2301123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921265

RESUMO

Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.


Assuntos
Amifostina , Humanos , Raios gama , Estudos Prospectivos , Dano ao DNA , Neurônios
12.
Pflugers Arch ; 465(9): 1261-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23515872

RESUMO

The SLC34 family of Na(+)-dependent inorganic phosphate cotransporters comprises two electrogenic isoforms (NaPi-IIa, NaPi-IIb) and an electroneutral isoform (NaPi-IIc). Both fulfill essential physiological roles in mammalian phosphate homeostasis. By substitution of three conserved amino acids, found in all electrogenic isoforms, at corresponding sites in NaPi-IIc, electrogenicity was re-established and the Na(+)/P i stoichiometry increased from 2:1 to 3:1. However, this engineered electrogenic construct (AAD-IIc) had a reduced apparent P i affinity and different presteady-state kinetics from the wild-type NaPi-IIa/b. We investigated AAD-IIc using electrophysiology and voltage clamp fluorometry to elucidate the compromised behavior. The activation energy for cotransport was threefold higher than for NaPi-IIc and 1.5-fold higher than for NaPi-IIa and the temperature dependence of presteady-state charge displacements suggested that the large activation energy was associated with the empty carrier reorientation. AAD-IIc shows a weak interaction of external Na(+) ions with the electric field, and thus retains the electroneutral cooperative interaction of two Na(+) ions preceding external P i binding of NaPi-IIc. Most of the presteady-state charge movement was accounted for by the empty carrier (in the absence of external P i ), and the cytosolic release of one Na(+) ion (in the presence of P i ). Simulations using a kinetic model recapitulated the presteady-state and steady-state behavior and allowed identification of two critical partial reactions: the final release of Na(+) to the cytosol and external P i binding. Fluorometric recordings from AAD-IIc mutants with Cys substituted at functionally important sites established that AAD-IIc undergoes substrate- and voltage-dependent conformational changes that correlated qualitatively with its presteady-state kinetics.


Assuntos
Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Sódio/metabolismo , Eletricidade Estática , Potenciais de Ação , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cinética , Camundongos , Dados de Sequência Molecular , Mutação , Fosfatos/metabolismo , Ligação Proteica , Sódio/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Xenopus
13.
Isr J Chem ; 53(9-10): 777-786, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26005219

RESUMO

New multifunctional, degradable, polymeric biomaterial systems would provide versatile platforms to address cell and tissue needs in both in vitro and in vivo environments. While protein-based composites or alloys are the building blocks of biological organisms, similar systems have not been largely exploited to dates to generate ad hoc biomaterials able to control and direct biological functions, by recapitulating their inherent structural and mechanical complexities. Therefore, we have recently proposed silk-tropoelastin material platforms able to conjugate a mechanically robust and durable protein, silk, to a highly flexible and biologically active protein, tropoelastin. This review focuses on the elucidation of the interactions between silk and tropoelastin in order to control material structure, properties, and ultimately functions. In addition, an approach is provided for novel material designs to provide tools to control biological outcomes via surface roughness, elasticity, and net charge for neuronal and mesenchymal stem cell-based tissue engineering.

14.
Sci Rep ; 13(1): 1442, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697489

RESUMO

Squamous cell lung cancer maintains its growth through elevated glucose consumption, but selective glucose consumption inhibitors are lacking. Here, we discovered using a high-throughput screen new compounds that block glucose consumption in three squamous cell lung cancer cell lines and identified 79 compounds that block glucose consumption in one or more of these cell lines. Based on its ability to block glucose consumption in all three cell lines, pacritinib, an inhibitor of FMS Related Receptor Tyrosine Kinase 3 (FLT3) and Janus Kinase 2 (JAK2), was further studied. Pacritinib decreased glucose consumption in squamous cell lung cancer cells in cell culture and in vivo without affecting glucose consumption in healthy tissues. Pacritinib blocked hexokinase activity, and Hexokinase 1 and 2 mRNA and protein expression. Overexpression of Hexokinase 1 blocked the ability of pacritinib to inhibit glucose consumption in squamous cell lung cancer cells. Overexpression of FLT3 but not JAK2 significantly increased glucose consumption and blocked the ability of pacritinib to inhibit glucose consumption in squamous cell lung cancer cells. Additional FLT3 inhibitors blocked glucose consumption in squamous cell lung cancer cells. Our study identifies FLT3 inhibitors as a new class of inhibitors that can block glucose consumption in squamous cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Mielofibrose Primária , Humanos , Mielofibrose Primária/patologia , Hexoquinase , Inibidores de Proteínas Quinases/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Células Epiteliais , Tirosina Quinase 3 Semelhante a fms
15.
Mol Imaging Biol ; 25(3): 541-553, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36284040

RESUMO

PURPOSE: Small molecule inhibitors that target oncogenic driver kinases are an important class of therapies for non-small cell lung cancer (NSCLC) and other malignancies. However, these therapies are not without their challenges. Each inhibitor works on only a subset of patients, the pharmacokinetics of these inhibitors is variable, and these inhibitors are associated with significant side effects. Many of these inhibitors lack non-invasive biomarkers to confirm pharmacodynamic efficacy, and our understanding of how these inhibitors block cancer cell growth remains incomplete. Limited clinical studies suggest that early (< 2 weeks after start of therapy) changes in tumor glucose consumption, measured by [18F]FDG PET imaging, can predict therapeutic efficacy, but the scope of this strategy and functional relevance of this inhibition of glucose consumption remains understudied. Here we demonstrate that early inhibition of glucose consumption as can be measured clinically with [18F]FDG PET is a consistent phenotype of efficacious targeted kinase inhibitors and is necessary for the subsequent inhibition of growth across models of NSCLC. METHODS: We tested nine NSCLC cell lines (A549, H1129, H1734, H1993, H2228, H3122, H460, HCC827, and PC9 cells) and ten targeted therapies (afatinib, buparlisib, ceritinib, cabozantinib, crizotinib, dovitinib, erlotinib, ponatinib, trametinib, and vemurafenib) across concentrations ranging from 1.6 nM to 5 µM to evaluate whether these inhibitors block glucose consumption at 24-h post-drug treatment and cell growth at 72-h post-drug treatment. We overexpressed the facilitative glucose transporter SLC2A1 (GLUT1) to test the functional connection between blocked glucose consumption and cell growth after treatment with a kinase inhibitor. A subset of these inhibitors and cell lines were studied in vivo. RESULTS: Across the nine NSCLC cell lines, ten targeted therapies, and a range of inhibitor concentrations, whether a kinase inhibitor blocked glucose consumption at 24-h post-drug treatment strongly correlated with whether that inhibitor blocked cell growth at 72-h post-drug treatment in cell culture. These results were confirmed in vivo with [18F]FDG PET imaging. GLUT1 overexpression blocked the kinase inhibitors from limiting glucose consumption and cell growth. CONCLUSIONS: Our results demonstrate that the early inhibition of lung cancer glucose consumption in response to a kinase inhibitor is a strong biomarker of and is often required for the subsequent inhibition of cell growth. Early inhibition of glucose consumption may provide complementary information to other biomarkers in determining whether a drug will effectively limit tumor growth.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Biomarcadores , Linhagem Celular Tumoral
16.
Sci Rep ; 13(1): 7174, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138045

RESUMO

Sample pooling is a promising strategy to facilitate COVID-19 surveillance testing for a larger population in comparison to individual single testing due to resource and time constraints. Increased surveillance testing capacity will reduce the likelihood of outbreaks as the general population is returning to work, school, and other gatherings. We have analyzed the impact of three variables on the effectiveness of pooling test samples: swab type, workflow, and positive sample order. We investigated the performance of several commercially available swabs (Steripack polyester flocked, Puritan nylon flocked, Puritan foam) in comparison to a new injected molded design (Yukon). The bench-top performance of collection swab was conducted with a previously developed anterior nasal cavity tissue model, based on a silk-glycerol sponge to mimic soft tissue mechanics and saturated with a physiologically relevant synthetic nasal fluid spiked with heat-inactivated SARS-CoV-2. Overall, we demonstrated statistically significant differences in performance across the different swab types. A characterization of individual swab uptake (gravimetric analysis) and FITC microparticle release suggests that differences in absorbance and retention drive the observed differences in Ct of the pooled samples. We also proposed two distinct pooling workflows to encompass different community collection modes and analyzed the difference in resulting positive pools as an effect of workflow, swab type, and positive sample order. Overall, swab types with lower volume retention resulted in reduced false negative occurrence, also observed for collection workflows with limited incubation times. Concurrently, positive sample order did have a significant impact on pooling test outcome, particularly in the case of swab type with great volume retention. We demonstrated that the variables investigated here affect the results of pooled COVID-19 testing, and therefore should be considered while designing pooled surveillance testing.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Fluxo de Trabalho , Manejo de Espécimes/métodos
17.
Adv Sci (Weinh) ; 10(12): e2205473, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36825685

RESUMO

The oral cavity contains distinct microenvironments that serve as oral barriers, such as the non-shedding surface of the teeth (e.g., enamel), the epithelial mucosa and gingival tissue (attached gingiva) where microbial communities coexist. The interactions and balances between these communities are responsible for oral tissue homeostasis or dysbiosis, that ultimately dictate health or disease. Disruption of this equilibrium can lead to chronic inflammation and permanent tissue damage in the case of chronic periodontitis. There are currently no experimental tissue models able to mimic the structural, physical, and metabolic conditions present in the human oral gingival tissue to support the long-term investigation of host-pathogens imbalances. Herein, the authors report an in vitro 3D anatomical gingival tissue model, fabricated from silk biopolymer by casting a replica mold of an adult human mandibular gingiva to recreate a tooth-gum unit. The model is based on human primary cultures that recapitulate physiological tissue organization, as well as a native oxygen gradient within the gingival pocket to support human subgingival plaque microbiome with a physiologically relevant level of microbial diversity up to 24 h. The modulation of inflammatory markers in the presence of oral microbiome indicates the humanized functional response of this model and establishes a new set of tools to investigate host-pathogen imbalances in gingivitis and periodontal diseases.


Assuntos
Gengivite , Microbiota , Doenças Periodontais , Adulto , Humanos , Gengiva , Bolsa Gengival
18.
Am J Physiol Cell Physiol ; 303(3): C348-54, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22673616

RESUMO

The human Na(+)-glucose cotransporter SGLT2 is expressed mainly in the kidney proximal convoluted tubule where it is considered to be responsible for the bulk of glucose reabsorption. Phosphorylation profiling has revealed that SGLT2 exists in a phosphorylated state in the rat renal proximal tubule cortex, so we decided to investigate the regulation of human SGLT2 (hSGLT2) by protein kinases. hSGLT2 was expressed in human embryonic kidney (HEK) 293T cells, and the activity of the protein was measured using radiotracer and whole cell patch-clamp electrophysiology assays before and after activation of protein kinases. 8-Bromo-adenosine cAMP (8-Br-cAMP) was used to activate protein kinase A, and sn-1,2-dioctanoylglycerol (DOG) was used to activate protein kinase C (PKC). 8-Br-cAMP stimulated D-[α-methyl-(14)C]glucopyranoside ([(14)C]α-MDG) uptake and Na(+)-glucose currents by 200% and DOG increased [(14)C]α-MDG uptake and Na(+)-glucose currents by 50%. In both cases the increase in SGLT2 activity was marked by an increase in the maximum rate of transport with no change in glucose affinity. These effects were completely negated by mutation of serine 624 to alanine. Insulin induced a 250% increase in Na(+)-glucose transport by wild-type but not S624A SGLT2. Parallel studies confirmed that the activity of hSGLT1 was regulated by PKA and PKC due to changes in the number of transporters in the cell membrane. hSGLT1 was relatively insensitive to insulin. We conclude that hSGLT1 and hSGLT2 are regulated by different mechanisms and suggest that insulin is an SGLT2 agonist in vivo.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Rim/metabolismo , Transportador 2 de Glucose-Sódio/fisiologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Diglicerídeos/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Glucose/metabolismo , Células HEK293 , Humanos , Insulina/farmacologia , Rim/efeitos dos fármacos , Mutação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transportador 2 de Glucose-Sódio/análise , Transportador 2 de Glucose-Sódio/genética
19.
Am J Physiol Cell Physiol ; 302(3): C539-54, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22075694

RESUMO

Type IIa/b Na(+)-coupled inorganic phosphate cotransporters (NaPi-IIa/b) are considered to be exclusively Na(+) dependent. Here we show that Li(+) can substitute for Na(+) as a driving cation. We expressed NaPi-IIa/b in Xenopus laevis oocytes and performed two-electrode voltage-clamp electrophysiology and uptake assays to investigate the effect of external Li(+) on their kinetics. Replacement of 50% external Na(+) with Li(+) reduced the maximum transport rate and the rate-limiting plateau of the P(i)-induced current began at less hyperpolarizing potentials. Simultaneous electrophysiology and (22)Na uptake on single oocytes revealed that Li(+) ions can substitute for at least one of the three Na(+) ions necessary for cotransport. Presteady-state assays indicated that Li(+) ions alone interact with the empty carrier; however, the total charge displaced was 70% of that with Na(+) alone, or when 50% of the Na(+) was replaced by Li(+). If Na(+) and Li(+) were both present, the midpoint potential of the steady-state charge distribution was shifted towards depolarizing potentials. The charge movement in the presence of Li(+) alone reflected the interaction of one Li(+) ion, in contrast to 2 Na(+) ions when only Na was present. We propose an ordered binding scheme for cotransport in which Li(+) competes with Na(+) to occupy the putative first cation interaction site, followed by the cooperative binding of one Na(+) ion, one divalent P(i) anion, and a third Na(+) ion to complete the carrier loading. With Li(+) bound, the kinetics of subsequent partial reactions were significantly altered. Kinetic simulations of this scheme support our experimental data.


Assuntos
Lítio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico , Potenciais da Membrana , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fosfatos/metabolismo , Xenopus laevis
20.
ACS Biomater Sci Eng ; 8(11): 4613-4617, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-35324141

RESUMO

Microbial communities are eubiotic ecosystems that interact dynamically and synergistically with the human body. Imbalances in these interactions may cause dysbiosis by enhancing the occurrence of inflammatory conditions, such as periodontal or inflammatory bowel diseases. However, the mechanisms that lie behind eubiosis-dysbiosis transitions are still unclear and constantly being redefined. While the societal impact of these diseases is steadily increasing, the lack of a clear understanding behind the onset of the inflammatory conditions prevents the proper clinical strategies from being formulated. Although preclinical and clinical models and short-term planar in vitro cultures represent superb research tools, they are still lacking human relevance and long-term use. Bioreactors and organs-on-a-chip have attracted interest because of their ability to recreate and sustain the physical, structural, and mechanical features of the native environment, as well as to support long-term coculture of mammalian cells and the microbiome through modulation of pH and oxygen gradients. Existing devices, however, are still under development to sustain the microbiome-host coculture over long periods of time. In this scenario, to understand disease triggers and develop therapeutics, research efforts should command the development of three-dimensional constructs that would allow the investigation of processes underlying the microbial community assembly and how microorganisms influence host traits in both acute and chronic conditions.


Assuntos
Disbiose , Microbiota , Animais , Humanos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA