Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2312111121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657041

RESUMO

Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.


Assuntos
Diferenciação Celular , Colite , Histona Desacetilases , Correpressor 1 de Receptor Nuclear , Células Th17 , Animais , Células Th17/citologia , Células Th17/metabolismo , Células Th17/imunologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos , Colite/genética , Colite/metabolismo , Colite/imunologia , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Interleucina-17/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Humanos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Interleucina-2/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762579

RESUMO

Oxidative stress-mediated damage is often a downstream result of Parkinson's disease (PD), which is marked by sharp decline in dopaminergic neurons within the nigrostriatal regions of the brain, accounting for the symptomatic motor deficits in patients. Regulating the level of oxidative stress may present a beneficial approach in preventing PD pathology. Here, we assessed the efficacy of a nicotinamide adenine phosphate (NADPH) oxidase (NOX) inhibitor, an exogenous reactive oxygen species (ROS) regulator synthesized by Aptabio therapeutics with the specificity to NOX-1, 2 and 4. Utilizing N27 rat dopaminergic cells and C57Bl/6 mice, we confirmed that the exposures of alpha-synuclein preformed fibrils (PFF) induced protein aggregation, a hallmark in PD pathology. In vitro assessment of the novel compound revealed an increase in cell viability and decreases in cytotoxicity, ROS, and protein aggregation (Thioflavin-T stain) against PFF exposure at the optimal concentration of 10 nM. Concomitantly, the oral treatment alleviated motor-deficits in behavioral tests, such as hindlimb clasping, rotarod, pole, nesting and grooming test, via reducing protein aggregation, based on rescued dopaminergic neuronal loss. The suppression of NOX-1, 2 and 4 within the striatum and ventral midbrain regions including Substantia Nigra compacta (SNc) contributed to neuroprotective/recovery effects, making it a potential therapeutic option for PD.


Assuntos
Doença de Parkinson , Humanos , Camundongos , Ratos , Animais , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Parte Compacta da Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457082

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative motor disorder without an available therapeutic to halt the formation of Lewy bodies for preventing dopaminergic neuronal loss in the nigrostriatal pathway. Since oxidative-stress-mediated damage has been commonly reported as one of the main pathological mechanisms in PD, we assessed the efficacy of a novel NOX inhibitor from AptaBio Therapeutics (C-6) in dopaminergic cells and PD mouse models. The compound reduced the cytotoxicity and enhanced the cell viability at various concentrations against MPP+ and α-synuclein preformed fibrils (PFFs). Further, the levels of ROS and protein aggregation were significantly reduced at the optimal concentration (1 µM). Using two different mouse models, we gavaged C-6 at two different doses to the PD sign-displaying transgenic mice for 2 weeks and stereotaxically PFF-injected mice for 5 weeks. Our results demonstrated that both C-6-treated mouse models showed alleviated motor deficits in pole test, hindlimb clasping, crossbeam, rotarod, grooming, and nesting analyses. We also confirmed that the compound treatment reduced the levels of protein aggregation, along with phosphorylated-α-synuclein, in the striatum and ventral midbrain and further dopaminergic neuronal loss. Taken together, our results strongly suggest that NOX inhibition can be a potential therapeutic target for PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo
4.
Cells ; 10(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34359864

RESUMO

Emerging evidence indicates that cellular senescence could be a critical inducing factor for aging-associated neurodegenerative disorders. However, the involvement of cellular senescence remains unclear in Parkinson's disease (PD). To determine this, we assessed the effects of α-synuclein preformed fibrils (α-syn PFF) or 1-methyl-4-phenylpyridinium (MPP+) on changes in cellular senescence markers, employing α-syn PFF treated-dopaminergic N27 cells, primary cortical neurons, astrocytes and microglia and α-syn PFF-injected mouse brain tissues, as well as human PD patient brains. Our results demonstrate that α-syn PFF-induced toxicity reduces the levels of Lamin B1 and HMGB1, both established markers of cellular senescence, in correlation with an increase in the levels of p21, a cell cycle-arrester and senescence marker, in both reactive astrocytes and microglia in mouse brains. Using Western blot and immunohistochemistry, we found these cellular senescence markers in reactive astrocytes as indicated by enlarged cell bodies within GFAP-positive cells and Iba1-positive activated microglia in α-syn PFF injected mouse brains. These results indicate that PFF-induced pathology could lead to astrocyte and/or microglia senescence in PD brains, which may contribute to neuropathology in this model. Targeting senescent cells using senolytics could therefore constitute a viable therapeutic option for the treatment of PD.


Assuntos
Senescência Celular , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , 1-Metil-4-fenilpiridínio , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Proteína HMGB1/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Lamina Tipo B/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Mudanças Depois da Morte , Ratos
5.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32887693

RESUMO

Small ubiquitin-like modifier (SUMO) is a widespread regulatory mechanism of post-translational modification (PTM) that induces rapid and reversible changes in protein function and stability. Using SUMO conjugase Ubc9-overexpressing or knock-down cells in Parkinson's disease (PD) models, we demonstrate that SUMOylation protects dopaminergic cells against MPP+ or preformed fibrils (PFFs) of α-synuclein (α-syn)-induced toxicities in cell viability and cytotoxicity assays. In the mechanism of protection, Ubc9 overexpression significantly suppressed the MPP+ or PFF-induced reactive oxygen species (ROS) generation, while Ubc9-RNAi enhanced the toxicity-induced ROS production. Further, PFF-mediated protein aggregation was exacerbated by Ubc9-RNAi in thioflavin T staining, compared with NC1 controls. In cycloheximide (Chx)-based protein stability assays, higher protein level of α-syn was identified in Ubc9-enhanced green fluorescent protein (EGFP) than in EGFP cells. Since there was no difference in endogenous mRNA levels of α-syn between Ubc9 and EGFP cells in quantitative real-time PCR (qRT-PCR), we assessed the mechanisms of SUMO-mediated delayed α-syn degradation via MG132, proteasomal inhibitor, and PMA, lysosomal degradation inducer. Ubc9-mediated SUMOylated α-syn avoided PMA-induced lysosomal degradation because of its high solubility. Our results suggest that Ubc9 enhances the levels of SUMO1 and ubiquitin on α-syn and interrupts SUMO1 removal from α-syn. In immunohistochemistry, dopaminergic axon tips in the striatum and cell bodies in the substantia nigra from Ubc9-overexpressing transgenic mice were protected from MPTP toxicities compared with wild-type (WT) siblings. Our results support that SUMOylation can be a regulatory target to protect dopaminergic neurons from oxidative stress and protein aggregation, with the implication that high levels of SUMOylation in dopaminergic neurons can prevent the pathologic progression of PD.


Assuntos
Doença de Parkinson , Enzimas de Conjugação de Ubiquitina , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos , Camundongos Transgênicos , Ubiquitina , alfa-Sinucleína/genética , gama-Glutamil Hidrolase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA