Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 300(10): 107739, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222682

RESUMO

The retina-specific ABCA transporter, ABCA4, is essential for vision, and its genetic variants are associated with a wide range of inherited retinal degenerative diseases, leading to blindness. Of the 1630 identified missense variants in ABCA4, ∼50% are of unknown pathogenicity (variants of unknown significance, VUS). This genetic uncertainty presents three main challenges: (i) inability to predict disease-causing variants in relatives of inherited retinal degenerative disease patients with multiple ABCA4 mutations; (ii) limitations in developing variant-specific treatments; and (iii) difficulty in using these variants for future disease prediction, affecting patients' life-planning and clinical trial participation. To unravel the clinical significance of ABCA4 genetic variants at the level of protein function, we have developed a virus-like particle-based system that expresses the ABCA4 protein and its variants. We validated the efficacy of this system in the enzymatic characterization (ATPase activity) of VLPs harboring ABCA4 and two variants of established pathogenicity: p.N965S and p.C1488R. Our results were consistent with previous reports and clinical phenotypes. We also applied this platform to characterize the VUS p.Y1779F and observed a functional impairment, suggesting a potential pathogenic impact. This approach offers an efficient, high-throughput method for ABCA4 VUS characterization. Our research points to the significant promise of the VLP-based system in the functional analysis of membrane proteins, offering important perspectives on the disease-causing potential of genetic variants and shedding light on genetic conditions involving such proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação de Sentido Incorreto , Variação Genética , Células HEK293 , Vírion/genética , Vírion/metabolismo , Animais
2.
J Am Chem Soc ; 146(10): 6817-6829, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427023

RESUMO

N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.


Assuntos
Compostos Heterocíclicos , Peptidoglicano , Humanos , Azidas , Ácidos Murâmicos , Reação de Cicloadição , Alcinos
3.
FASEB J ; 36(3): e22220, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35195928

RESUMO

Erythroid differentiation (ED) is a complex cellular process entailing morphologically distinct maturation stages of erythroblasts during terminal differentiation. Studies of actin filament (F-actin) assembly and organization during terminal ED have revealed essential roles for the F-actin pointed-end capping proteins, tropomodulins (Tmod1 and Tmod3). Tmods bind tropomyosins (Tpms), which enhance Tmod capping and F-actin stabilization. Tmods can also nucleate F-actin assembly, independent of Tpms. Tmod1 is present in the red blood cell (RBC) membrane skeleton, and deletion of Tmod1 in mice leads to a mild compensated anemia due to mis-regulated F-actin lengths and membrane instability. Tmod3 is not present in RBCs, and global deletion of Tmod3 leads to embryonic lethality in mice with impaired ED. To further decipher Tmod3's function during ED, we generated a Tmod3 knockout in a mouse erythroleukemia cell line (Mel ds19). Tmod3 knockout cells appeared normal prior to ED, but showed defects during progression of ED, characterized by a marked failure to reduce cell and nuclear size, reduced viability, and increased apoptosis. Tmod3 does not assemble with Tmod1 and Tpms into the Triton X-100 insoluble membrane skeleton during ED, and loss of Tmod3 had no effect on α1,ß1-spectrin and protein 4.1R assembly into the membrane skeleton. However, F-actin, Tmod1 and Tpms failed to assemble into the membrane skeleton during ED in absence of Tmod3. We propose that Tmod3 nucleation of F-actin assembly promotes incorporation of Tmod1 and Tpms into membrane skeleton F-actin, and that this is integral to morphological maturation and cell survival during erythroid terminal differentiation.


Assuntos
Citoesqueleto de Actina/metabolismo , Eritroblastos/citologia , Eritropoese , Leucemia Eritroblástica Aguda/metabolismo , Tropomodulina/metabolismo , Animais , Linhagem Celular Tumoral , Eritroblastos/metabolismo , Leucemia Eritroblástica Aguda/sangue , Camundongos , Multimerização Proteica , Espectrina/metabolismo , Tropomodulina/genética
4.
Blood ; 135(21): 1887-1898, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32315395

RESUMO

Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9-related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models. Defective proplatelet formation is considered to be the principal mechanism underlying the macrothrombocytopenia phenotype. However, MYH9-RD patient MKs may have other defects, as NMII interactions with actin filaments regulate physiological processes such as chemotaxis, cell migration, and adhesion. How MYH9-RD mutations affect MK migration and adhesion in BM or NMIIA activity and assembly prior to proplatelet production remain unanswered. NMIIA is the only NMII isoform expressed in mature MKs, permitting exploration of these questions without complicating effects of other NMII isoforms. Using mouse models of MYH9-RD (NMIIAR702C+/-GFP+/-, NMIIAD1424N+/-, and NMIIAE1841K+/-) and in vitro assays, we investigated MK distribution in BM, chemotaxis toward stromal-derived factor 1, NMIIA activity, and bipolar filament assembly. Results indicate that different MYH9-RD mutations suppressed MK migration in the BM without compromising bipolar filament formation but led to divergent adhesion phenotypes and NMIIA contractile activities depending on the mutation. We conclude that MYH9-RD mutations impair MK chemotaxis by multiple mechanisms to disrupt migration toward the vasculature, impairing proplatelet release and causing macrothrombocytopenia.


Assuntos
Movimento Celular , Perda Auditiva Neurossensorial/complicações , Megacariócitos/patologia , Mutação , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIA/genética , Trombocitopenia/congênito , Trombocitopenia/patologia , Animais , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Trombocitopenia/complicações , Trombocitopenia/etiologia , Trombocitopenia/metabolismo
5.
Curr Biol ; 31(10): R501-R503, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033779

RESUMO

Arit Ghosh and Velia Fowler introduce the structural features and functions of tropomodulins - actin-binding proteins that cap the slow-growing (pointed) ends of actin filaments.


Assuntos
Citoesqueleto de Actina , Tropomodulina , Actinas , Proteínas dos Microfilamentos
6.
mBio ; 11(6)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234686

RESUMO

The filamentous fungus Neurospora crassa decomposes lignocellulosic biomass to generate soluble sugars as carbon sources. In this study, we investigated a role for heterotrimeric G-protein signaling in cellulose degradation. Loss of the Gα subunit genes gna-1 and gna-3, the Gß subunit genes gnb-1 and cpc-2, the Gγ gene gng-1, or the gene for downstream effector adenylyl cyclase (cr-1) resulted in loss of detectable cellulase activity. This defect was also observed in strains expressing a constitutively active version of gna-3 (gna-3Q208L ). We found that GNA-1 levels are greatly reduced in Δgna-3, Δgnb-1, and Δgng-1 strains, likely contributing to cellulase defects in these genetic backgrounds. The observation that gna-3Q208L Δgnb-1 strains exhibit cellulase activity, despite greatly reduced levels of GNA-1 protein, is consistent with positive control of cellulase production by GNA-3 that is manifested in the absence of gnb-1 Expression patterns for five cellulase genes showed that Δgna-1, Δgnb-1, and Δgna-3 mutants produce less cellulase mRNA than the wild type, consistent with transcriptional regulation. Δcpc-2 mutants had wild-type levels of cellulase transcripts, suggesting posttranscriptional control. In contrast, results for Δcr-1 mutants support both transcriptional and posttranscriptional control of cellulase activity by cAMP signaling. Cellulase activity defects in Δgna-3 mutants were fully remediated by cAMP supplementation, consistent with GNA-3 operating upstream of cAMP signaling. In contrast, cAMP addition only partially corrected cellulase activity defects in Δgna-1 and Δgnb-1 mutants, suggesting participation of GNA-1 and GNB-1 in additional cAMP-independent pathways that control cellulase activity.IMPORTANCE Filamentous fungi are critical for the recycling of plant litter in the biosphere by degrading lignocellulosic biomass into simpler compounds for metabolism. Both saprophytic and pathogenic fungi utilize plant cell wall-degrading enzymes to liberate carbon for metabolism. Several studies have demonstrated a role for cellulase enzymes during infection of economically relevant crops by fungal pathogens. Especially in developing countries, severe plant disease means loss of entire crops, sometimes leading to starvation. In this study, we demonstrate that G-protein signaling is a key component of cellulase production. Therefore, understanding the role of G-protein signaling in the regulation of the unique metabolism of cellulose by these organisms can inform innovations in strain engineering of industrially relevant species for biofuel production and in combatting food shortages caused by plant pathogens.


Assuntos
Celulose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neurospora crassa/fisiologia , Multimerização Proteica , Transdução de Sinais , Biodegradação Ambiental , Metabolismo dos Carboidratos , Celulase/genética , Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Família Multigênica , Mutação
7.
PLoS One ; 14(10): e0223334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581262

RESUMO

Receptor for Activated C Kinase-1 (RACK1) is a multifunctional eukaryotic scaffolding protein with a seven WD repeat structure. Among their many cellular roles, RACK1 homologs have been shown to serve as alternative Gß subunits during heterotrimeric G protein signaling in many systems. We investigated genetic interactions between the RACK1 homolog cpc-2, the previously characterized Gß subunit gnb-1 and other G protein signaling components in the multicellular filamentous fungus Neurospora crassa. Results from cell fractionation studies and from fluorescent microscopy of a strain expressing a CPC-2-GFP fusion protein revealed that CPC-2 is a cytoplasmic protein. Genetic epistasis experiments between cpc-2, the three Gα genes (gna-1, gna-2 and gna-3) and gnb-1 demonstrated that cpc-2 is epistatic to gna-2 with regards to basal hyphae growth rate and aerial hyphae height, while deletion of cpc-2 mitigates the increased macroconidiation on solid medium observed in Δgnb-1 mutants. Δcpc-2 mutants inappropriately produce conidiophores during growth in submerged culture and mutational activation of gna-3 alleviates this defect. Δcpc-2 mutants are female-sterile and fertility could not be restored by mutational activation of any of the three Gα genes. With the exception of macroconidiation on solid medium, double mutants lacking cpc-2 and gnb-1 exhibited more severe defects for all phenotypic traits, supporting a largely synergistic relationship between GNB-1 and CPC-2 in N. crassa.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/genética , Neurospora crassa/genética , Quinases Associadas a rho/genética , Genes Fúngicos , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Modelos Biológicos , Mutação , Neurospora crassa/classificação , Neurospora crassa/imunologia , Fenótipo , Filogenia , Ligação Proteica , Proteínas Recombinantes , Quinases Associadas a rho/química , Quinases Associadas a rho/metabolismo
8.
Mol Biol Cell ; 29(10): 1258-1269, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29540532

RESUMO

Previous genetic and biochemical studies from Saccharomyces cerevisiae have identified a critical ribosome-associated quality control complex (RQC) that facilitates resolution of stalled ribosomal complexes. While components of the mammalian RQC have been examined in vitro, a systematic characterization of RQC protein interactions in mammalian cells has yet to be described. Here we utilize both proximity-labeling proteomic approaches, BioID and APEX, and traditional affinity-based strategies to both identify interacting proteins of mammalian RQC members and putative substrates for the RQC resident E3 ligase, Ltn1. Surprisingly, validation studies revealed that a subset of substrates are ubiquitylated by Ltn1 in a regulatory manner that does not result in subsequent substrate degradation. We demonstrate that Ltn1 catalyzes the regulatory ubiquitylation of ribosomal protein S6 kinase 1 and 2 (RPS6KA1, RPS6KA3). Further, loss of Ltn1 function results in hyperactivation of RSK1/2 signaling without impacting RSK1/2 protein turnover. These results suggest that Ltn1-mediated RSK1/2 ubiquitylation is inhibitory and establishes a new role for Ltn1 in regulating mitogen-activated kinase signaling via regulatory RSK1/2 ubiquitylation. Taken together, our results suggest that mammalian RQC interactions are difficult to observe and may be more transient than the homologous complex in S. cerevisiae and that Ltn1 has RQC-independent functions.


Assuntos
Mamíferos/metabolismo , Mapeamento de Interação de Proteínas , Ribossomos/metabolismo , Coloração e Rotulagem , Animais , Linhagem Celular , Humanos , Mitógenos/metabolismo , Fosforilação , Ligação Proteica , Proteômica , Transdução de Sinais , Ubiquitinação
9.
G3 (Bethesda) ; 4(2): 349-65, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24347630

RESUMO

Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase catalytic subunit knockout mutants for phenotypes during growth, asexual development, and sexual development. We found that 91% of the mutants had defects in at least one of these traits, whereas 29% possessed phenotypes in all three. Chemical sensitivity screens were conducted to reveal additional phenotypes for the mutants. This resulted in the identification of at least one chemical sensitivity phenotype for 17 phosphatase knockout mutants, including novel chemical sensitivities for two phosphatase mutants lacking a growth or developmental phenotype. Hence, chemical sensitivity or growth/developmental phenotype was observed for all 24 viable mutants. We investigated p38 mitogen-activated protein kinase (MAPK) phosphorylation profiles in the phosphatase mutants and identified nine potential candidates for regulators of the p38 MAPK. We demonstrated that the PP2C class phosphatase pph-8 (NCU04600) is an important regulator of female sexual development in N. crassa. In addition, we showed that the Δcsp-6 (ΔNCU08380) mutant exhibits a phenotype similar to the previously identified conidial separation mutants, Δcsp-1 and Δcsp-2, that lack transcription factors important for regulation of conidiation and the circadian clock.


Assuntos
Domínio Catalítico/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Neurospora crassa/genética , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Fúngicas/metabolismo , Mutação , Neurospora crassa/enzimologia , Neurospora crassa/fisiologia , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Esporos Fúngicos/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA