Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 81(21): 4481-4492.e9, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34555356

RESUMO

The etiological role of NSD2 enzymatic activity in solid tumors is unclear. Here we show that NSD2, via H3K36me2 catalysis, cooperates with oncogenic KRAS signaling to drive lung adenocarcinoma (LUAD) pathogenesis. In vivo expression of NSD2E1099K, a hyperactive variant detected in individuals with LUAD, rapidly accelerates malignant tumor progression while decreasing survival in KRAS-driven LUAD mouse models. Pathologic H3K36me2 generation by NSD2 amplifies transcriptional output of KRAS and several complementary oncogenic gene expression programs. We establish a versatile in vivo CRISPRi-based system to test gene functions in LUAD and find that NSD2 loss strongly attenuates tumor progression. NSD2 knockdown also blocks neoplastic growth of PDXs (patient-dervived xenografts) from primary LUAD. Finally, a treatment regimen combining NSD2 depletion with MEK1/2 inhibition causes nearly complete regression of LUAD tumors. Our work identifies NSD2 as a bona fide LUAD therapeutic target and suggests a pivotal epigenetic role of the NSD2-H3K36me2 axis in sustaining oncogenic signaling.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Metilação de DNA , Histona-Lisina N-Metiltransferase/química , Histonas/química , Neoplasias Pulmonares/metabolismo , Proteínas Repressoras/química , Adenocarcinoma de Pulmão/mortalidade , Animais , Biópsia , Sistemas CRISPR-Cas , Carcinogênese/genética , Progressão da Doença , Epigênese Genética , Epigenômica , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Oncogenes , Prognóstico , Transdução de Sinais , Resultado do Tratamento
2.
Ann Rheum Dis ; 81(3): 406-415, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34789453

RESUMO

OBJECTIVES: Drug reaction with eosinophilia and systemic symptoms (DRESS) is a severe, delayed hypersensitivity reaction (DHR). We observed DRESS to inhibitors of interleukin 1 (IL-1) or IL-6 in a small group of patients with Still's disease with atypical lung disease. We sought to characterise features of patients with Still's disease with DRESS compared with drug-tolerant Still's controls. We analysed human leucocyte antigen (HLA) alleles for association to inhibitor-related DHR, including in a small Kawasaki disease (KD) cohort. METHODS: In a case/control study, we collected a multicentre series of patients with Still's disease with features of inhibitor-related DRESS (n=66) and drug-tolerant Still's controls (n=65). We retrospectively analysed clinical data from all Still's subjects and typed 94/131 for HLA. European Still's-DRESS cases were ancestry matched to International Childhood Arthritis Genetics Consortium paediatric Still's cases (n=550) and compared for HLA allele frequencies. HLA association also was analysed using Still's-DRESS cases (n=64) compared with drug-tolerant Still's controls (n=30). KD subjects (n=19) were similarly studied. RESULTS: Still's-DRESS features included eosinophilia (89%), AST-ALT elevation (75%) and non-evanescent rash (95%; 88% involving face). Macrophage activation syndrome during treatment was frequent in Still's-DRESS (64%) versus drug-tolerant Still's (3%; p=1.2×10-14). We found striking enrichment for HLA-DRB1*15 haplotypes in Still's-DRESS cases versus INCHARGE Still's controls (p=7.5×10-13) and versus self-identified, ancestry-matched Still's controls (p=6.3×10-10). In the KD cohort, DRB1*15:01 was present only in those with suspected anakinra reactions. CONCLUSIONS: DRESS-type reactions occur among patients treated with IL-1/IL-6 inhibitors and strongly associate with common HLA-DRB1*15 haplotypes. Consideration of preprescription HLA typing and vigilance for serious reactions to these drugs are warranted.


Assuntos
Antirreumáticos/efeitos adversos , Cadeias HLA-DRB1/genética , Hipersensibilidade Tardia/genética , Doença de Still de Início Tardio/tratamento farmacológico , Doença de Still de Início Tardio/genética , Adulto , Alelos , Estudos de Casos e Controles , Síndrome de Hipersensibilidade a Medicamentos/genética , Síndrome de Hipersensibilidade a Medicamentos/imunologia , Tolerância a Medicamentos/genética , Feminino , Cadeias HLA-DRB1/imunologia , Haplótipos , Humanos , Hipersensibilidade Tardia/imunologia , Interleucina-1/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Masculino , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/genética , Estudos Retrospectivos , Doença de Still de Início Tardio/imunologia
3.
J Immunol ; 199(5): 1783-1795, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733485

RESUMO

Lineage-Sca-1+c-Kit- (LSK-) cells are a lymphoid progenitor population that expands in the spleen and preferentially differentiates into mature B cells in response to Plasmodium yoelii infection in mice. Furthermore, LSK- derived B cells can subsequently contribute to the ongoing immune response through the generation of parasite-specific Ab-secreting cells, as well as germinal center and memory B cells. However, the factors that promote their differentiation into B cells in the spleen postinfection are not defined. In this article, we show that LSK- cells produce the cytokine IL-17 in response to Plasmodium infection. Using Il-17ra-/- mice, IL-17R signaling in cells other than LSK- cells was found to support their differentiation into B cells. Moreover, primary splenic stromal cells grown in the presence of IL-17 enhanced the production of CXCL12, a chemokine associated with B cell development in the bone marrow, by a population of IL-17RA-expressing podoplanin+CD31- stromal cells, a profile associated with fibroblastic reticular cells. Subsequent blockade of CXCL12 in vitro reduced differentiation of LSK- cells into B cells, supporting a direct role for this chemokine in this process. Immunofluorescence indicated that podoplanin+ stromal cells in the red pulp were the primary producers of CXCL12 after P. yoelii infection. Furthermore, podoplanin staining on stromal cells was more diffuse, and CXCL12 staining was dramatically reduced in Il-17ra-/- mice postinfection. Together, these results identify a distinct pathway that supports lymphoid development in the spleen during acute Plasmodium infection.


Assuntos
Células Produtoras de Anticorpos/fisiologia , Linfócitos B/fisiologia , Interleucina-17/metabolismo , Células Progenitoras Linfoides/fisiologia , Malária/imunologia , Plasmodium yoelii/imunologia , Baço/imunologia , Animais , Anticorpos Antiprotozoários/metabolismo , Células Produtoras de Anticorpos/parasitologia , Linfócitos B/parasitologia , Diferenciação Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Memória Imunológica , Células Progenitoras Linfoides/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores de Interleucina-17/genética
4.
J Immunol ; 196(2): 778-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667167

RESUMO

Blood-stage Plasmodium chabaudi chabaudi AS infection requires cell- and Ab-mediated immunity to control acute and persistent infection, respectively. ICOS regulates CD4(+) T cell activation and promotes the induction of follicular Th (TFH) cells, CD4(+) T cells that support B cell affinity maturation within germinal centers (GCs), resulting in the production of high-affinity Abs. In this article, we demonstrate that, in response to P. c. chabaudi AS infection, the absence of ICOS resulted in an enhanced Th1 immune response that reduced peak parasitemia. Despite the absence of ICOS, CD4(+) T cells were capable of expressing PD-1, B cell lymphoma 6, and CXCR5 during early infection, indicating TFH development was not impaired. However, by day 21 postinfection, Icos(-/-) mice accumulated fewer splenic TFHs compared with Icos(+/+) mice, leading to substantially fewer GC B cells and a decrease in affinity, but not production, of parasite-specific isotype-switched Abs. Moreover, treatment of mice with anti-ICOS ligand Abs to modulate ICOS-ICOS ligand signaling revealed a requirement for ICOS in TFH differentiation only after day 6 postinfection. Ultimately, the quality and quantity of isotype-switched Abs produced in Icos(-/-) mice declined over time, resulting in impaired control of persistent parasitemia. Collectively, these data suggest ICOS is not required for TFH induction during P. c. chabaudi AS infection or production of isotype-switched Abs, but it is necessary for maintenance of a sustained high-affinity, protective Ab response.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Ativação Linfocitária/imunologia , Malária/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Centro Germinativo/citologia , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium chabaudi , Células Th1/imunologia
5.
J Immunol ; 197(5): 1788-800, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448588

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) function to replenish the immune cell repertoire under steady-state conditions and in response to inflammation due to infection or stress. Whereas the bone marrow serves as the primary niche for hematopoiesis, extramedullary mobilization and differentiation of HSPCs occur in the spleen during acute Plasmodium infection, a critical step in the host immune response. In this study, we identified an atypical HSPC population in the spleen of C57BL/6 mice, with a lineage(-)Sca-1(+)c-Kit(-) (LSK(-)) phenotype that proliferates in response to infection with nonlethal Plasmodium yoelii 17X. Infection-derived LSK(-) cells upon transfer into naive congenic mice were found to differentiate predominantly into mature follicular B cells. However, when transferred into infection-matched hosts, infection-derived LSK(-) cells gave rise to B cells capable of entering into a germinal center reaction, and they developed into memory B cells and Ab-secreting cells that were capable of producing parasite-specific Abs. Differentiation of LSK(-) cells into B cells in vitro was enhanced in the presence of parasitized RBC lysate, suggesting that LSK(-) cells expand and differentiate in direct response to the parasite. However, the ability of LSK(-) cells to differentiate into B cells was not dependent on MyD88, as myd88(-/-) LSK(-) cell expansion and differentiation remained unaffected after Plasmodium infection. Collectively, these data identify a population of atypical lymphoid progenitors that differentiate into B lymphocytes in the spleen and are capable of contributing to the ongoing humoral immune response against Plasmodium infection.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Linfócitos B/imunologia , Malária/imunologia , Células Precursoras de Linfócitos B/imunologia , Baço/citologia , Animais , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Diferenciação Celular/imunologia , Proliferação de Células , Imunidade Humoral , Memória Imunológica , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Plasmodium yoelii/imunologia , Plasmodium yoelii/fisiologia , Células Precursoras de Linfócitos B/fisiologia , Transdução de Sinais , Baço/imunologia
6.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961505

RESUMO

Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE: Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.

7.
J Lipid Res ; 53(12): 2560-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23060454

RESUMO

Leishmania donovani (LD), the causative agent of visceral leishmaniasis (VL), extracts membrane cholesterol from macrophages and disrupts lipid rafts, leading to their inability to stimulate T cells. Restoration of membrane cholesterol by liposomal delivery corrects the above defects and offers protection in infected hamsters. To reinforce further the protective role of cholesterol in VL, mice were either provided a high-cholesterol (atherogenic) diet or underwent statin treatment. Subsequent LD infection showed that an atherogenic diet is associated with protection, whereas hypocholesterolemia due to statin treatment confers susceptibility to the infection. This observation was validated in apolipoprotein E knockout mice (AE) mice that displayed intrinsic hypercholesterolemia with hepatic granuloma, production of host-protective cytokines, and expansion of antileishmanial CD8(+)IFN- γ (+) and CD8(+)IFN- γ (+)TNF- α (+) T cells in contrast to the wild-type C57BL/6 (BL/6) mice when infected with LD. Normal macrophages from AE mice (N-AE-MΦ) showed 3-fold higher membrane cholesterol coupled with increased fluorescence anisotropy (FA) compared with wild-type macrophage (N-BL/6-MΦ). Characterization of in vitro LD-infected AE macrophage (LD-AE-MΦ) revealed intact raft architecture and ability to stimulate T cells, which were compromised in LD-BL/6-MΦ. This study clearly indicates that hypercholesterolemia, induced intrinsically or extrinsically, can control the pathogenesis of VL by modulating immune repertoire in favor of the host.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Hiperlipidemias/metabolismo , Leishmania donovani/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/prevenção & controle , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Citocinas/imunologia , Granuloma , Hiperlipidemias/imunologia , Hiperlipidemias/parasitologia , Sinapses Imunológicas/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Fígado/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/imunologia
8.
Exp Parasitol ; 132(2): 180-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22771864

RESUMO

Infections due to protozoa of the genus Leishmania are a major worldwide health problem, with high endemicity in developing countries. The aim of this study was to evaluate the in vitro antileishmanial activity of the acetone and methanol leaf extracts of Anisomeles malabarica, flower of Gloriosa superba, leaf of Ocimum basilicum, leaf and seed of Ricinus communis against promastigotes form of Leishmania donovani. Antiparasitic evaluations of different plant crude extracts were performed on 96 well plates at 37°C for 24-48 h. Out of the 10 experimental plant extracts tested, the leaf methanol extracts of A. malabarica, and R. communis showed good antileishmanial activity (IC(50)=126±19.70 and 184±39.33 µg/mL), respectively against promastigotes. Effective antileishmanial activity was observed making these plants as good candidates for isolation of antiprotozoal compounds which could serve as new lead structures for drug development.


Assuntos
Leishmania donovani/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Relação Dose-Resposta a Droga , Flores/química , Índia , Lamiaceae/química , Liliaceae/química , Ocimum basilicum/química , Folhas de Planta/química , Ricinus/química , Sementes/química
9.
Curr Opin Immunol ; 77: 102231, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797920

RESUMO

The effector activity of IgG antibodies is regulated at several levels, including IgG subclass, modifications of the Fc glycan, and the distribution of Type I and II Fcγ receptors (FcγR) on effector cells. Here, we explore how Fc glycosylation, particularly sialylation and fucosylation, tunes cellular responses to immune complexes. We review the current understanding of the pathways and mechanisms underlying this biology, address FcγR in antigen presentation, and discuss aspects of the clinical understanding of Fc glycans in therapies and disease.


Assuntos
Imunoglobulina G , Receptores de IgG , Complexo Antígeno-Anticorpo/metabolismo , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G/metabolismo , Polissacarídeos
10.
Cell Rep ; 38(4): 110200, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081339

RESUMO

The non-classical Major Histocompatibility Complex class II (MHCII) protein, H2-M, edits peptides bound to conventional MHCII in favor of stable peptide/MHCII (p/MHCII) complexes. Here, we show that H2-M deficiency affects B-1 cell survival, reduces cell renewal capacity, and alters immunoglobulin repertoire, allowing for the selection of cells specific for highly abundant epitopes, but not low-frequency epitopes. H2-M-deficient B-1 cells have shorter CDR3 length, higher content of positively charged amino acids, shorter junctional regions, less mutation frequency, and a skewed clonal distribution. Mechanistically, H2-M loss reduces plasma membrane p/MHCII association with B cell receptors (BCR) on B-1 cells and diminishes integrated BCR signal strength, a key determinant of B-1 cell selection, maturation, and maintenance. Thus, H2-M:MHCII interaction serves as a cell-intrinsic regulator of BCR signaling and influences the selection of the B-1 cell clonal repertoire.


Assuntos
Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Ativação Linfocitária/imunologia , Camundongos
11.
J Leukoc Biol ; 110(4): 753-769, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464668

RESUMO

The spleen is a complex secondary lymphoid organ that plays a crucial role in controlling blood-stage infection with Plasmodium parasites. It is tasked with sensing and removing parasitized RBCs, erythropoiesis, the activation and differentiation of adaptive immune cells, and the development of protective immunity, all in the face of an intense inflammatory environment. This paper describes how these processes are regulated following infection and recognizes the gaps in our current knowledge, highlighting recent insights from human infections and mouse models.


Assuntos
Imunidade , Malária/imunologia , Baço/imunologia , Animais , Eritrócitos/parasitologia , Hematopoese , Humanos , Malária/parasitologia , Malária/prevenção & controle , Plasmodium/fisiologia , Baço/parasitologia , Baço/patologia
12.
Curr Opin Immunol ; 70: 129-137, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34242927

RESUMO

In addition to their role as antibody producing cells, B cells make a critical contribution to adaptive immune responses by functioning as professional antigen-presenting cells (APC). Distinctive features of B cells as APC include the expression of the B cell receptor (BCR) for antigen and regulated expression of HLA-DO. Here, we discuss recent progress in investigation of B cells as APC. We start with an update on the canonical MHC class II antigen presentation pathway in B cells and alternative pathways, including generation of extracellular vesicles. Turning to APC function, we highlight the roles of B cells as thymic APC, as APC for T follicular helper (TFH), as APC for CD4 memory T cells and as presenters of idiotypic BCR determinants. We also note recent examples that link B cell Ag-presentation to disease. Emerging evidence indicates that, in addition to unique features of B cells compared to other professional APC, there is appreciable heterogeneity among B cells, arising from, for example, B cell activation state or the microenvironment.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Animais , Humanos
13.
Methods Mol Biol ; 1988: 315-341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147950

RESUMO

Pulse-chase analysis is a commonly used technique for studying the synthesis, processing, and transport of proteins. Cultured cells expressing proteins of interest are allowed to take up radioactively labeled amino acids for a brief interval ("pulse"), during which all newly synthesized proteins incorporate the label. The cells are then returned to nonradioactive culture medium for various times ("chase"), during which proteins may undergo conformational changes, trafficking, or degradation. Proteins of interest are isolated (usually by immunoprecipitation) and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the fate of radiolabeled molecules is examined by autoradiography. This chapter describes a pulse-chase protocol suitable for studies of major histocompatibility complex (MHC) class II biosynthesis and maturation. We discuss how results are affected by the recognition by certain anti-class II antibodies of distinct class II conformations associated with particular biosynthetic states. Our protocol can be adapted to follow the fate of many other endogenously synthesized proteins, including viral or transfected gene products, in cultured cells.


Assuntos
Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/metabolismo , Biologia Molecular/métodos , Peptídeos/metabolismo , Animais , Anticorpos/metabolismo , Linhagem Celular , Detergentes , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos
14.
Vaccines (Basel) ; 3(2): 448-66, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26343197

RESUMO

The barriers presented by immune suppression in the ovarian tumor microenvironment present one of the biggest challenges to development of successful tumor vaccine strategies for prevention of disease recurrence and progression following primary surgery and chemotherapy. New insights gained over the last decade have revealed multiple mechanisms of immune regulation, with ovarian tumor-associated macrophages/DC likely to fulfill a central role in creating a highly immunosuppressive milieu that supports disease progression and blocks anti-tumor immunity. This review provides an appraisal of some of the key signaling pathways that may contribute to immune suppression in ovarian cancer, with a particular focus on the potential involvement of the c-KIT/PI3K/AKT, wnt/ß-catenin, IL-6/STAT3 and AhR signaling pathways in regulation of indoleamine 2,3-dioxygenase expression in tumor-associated macrophages. Knowledge of intercellular and intracellular circuits that shape immune suppression may afford insights for development of adjuvant treatments that alleviate immunosuppression in the tumor microenvironment and enhance the clinical efficacy of ovarian tumor vaccines.

15.
Curr Immunol Rev ; 9(3): 129-140, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25383072

RESUMO

Toll-like receptors (TLRs) are important for recognizing a variety of pathogens, including protozoan parasites, and initiating innate immune responses against them. TLRs are localized on the cell surface as well as in the endosome, and are implicated in innate sensing of these parasites. In this review, we will discuss recent findings on the identification of parasite-derived pathogen associated molecular patterns and the TLRs that bind them. The role of these TLRs in initiating the immune response against protozoan parasitic infections in vivo will be presented in the context of murine models of infection utilizing TLR-deficient mice. Additionally, we will explore evidence that TLRs and genetic variants of TLRs may impact the outcome of these parasitic infections in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA