Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMC Plant Biol ; 24(1): 690, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030485

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor) is a promising opportunity crop for arid regions of Africa due to its high tolerance to drought and heat stresses. Screening for genetic variability in photosynthetic regulation under salt stress can help to identify target trait combinations essential for sorghum genetic improvement. The primary objective of this study was to identify reliable indicators of photosynthetic performance under salt stress for forage yield within a panel of 18 sorghum varieties from stage 1 (leaf 3) to stage 7 (late flowering to early silage maturity). We dissected the genetic diversity and variability in five stress-sensitive photosynthetic parameters: nonphotochemical chlorophyll fluorescence quenching (NPQ), the electron transport rate (ETR), the maximum potential quantum efficiency of photosystem II (FV/FM), the CO2 assimilation rate (A), and the photosynthetic performance based on absorption (PIABS). Further, we investigated potential genes for target phenotypes using a combined approach of bioinformatics, transcriptional analysis, and homologous overexpression. RESULTS: The panel revealed polymorphism, two admixed subpopulations, and significant molecular variability between and within population. During the investigated development stages, the PIABS varied dramatically and consistently amongst varieties. Under higher saline conditions, PIABS also showed a significant positive connection with A and dry matter gain. Because PIABS is a measure of plants' overall photosynthetic performance, it was applied to predict the salinity performance index (SPI). The SPI correlated positively with dry matter gain, demonstrating that PIABS could be used as a reliable salt stress performance marker for forage sorghum. Eight rubisco large subunit genes were identified in-silico and validated using qPCR with variable expression across the varieties under saline conditions. Overexpression of Rubisco Large Subunit 8 increased PIABS, altered the OJIP, and growth with an insignificant effect on A. CONCLUSIONS: These findings provide insights into strategies for enhancing the photosynthetic performance of sorghum under saline conditions for improved photosynthetic performance and potential dry matter yield. The integration of molecular approaches, guided by the identified genetic variability, holds promise for genetically breeding sorghum tailored to thrive in arid and saline environments, contributing to sustainable agricultural practices.


Assuntos
Variação Genética , Fotossíntese , Estresse Salino , Sorghum , Sorghum/genética , Sorghum/fisiologia , Sorghum/metabolismo , Estresse Salino/genética , Clorofila/metabolismo
2.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724266

RESUMO

AIMS: Although phosphate solubilizing bacteria (PSB) have been globally reported to improve soil phosphorus (P) availability and plant growth, technical gaps such as the lack of an ideal screening approach, is yet to be addressed. The potential of non-halo-forming PSB remains underestimated because of the currently adopted screening protocols that exclusively consider halo-forming and PSB with high phosphorus solubilization (PS) capacities. Yet, caution should be taken to properly assess PSB with contrasting PS rates regardless of the presence or absence of the solubilization halo. METHODS AND RESULTS: This study sought to examine the PS rate and plant growth promotion ability of 12 PSB categorized as high PSB (H-PSB), medium PSB (M-PSB), and low PSB (L-PSB) based on their PS rates of rock phosphate (RP). The non-halo-forming PSB Arthrobacter pascens was categorized as H-PSB, which might have been eliminated during the classical screening process. In addition, induction of organic acids and phosphatase activity in rhizosphere soils by H-, M-, and L-PSB was proportional to increased wheat P content by 143.22, 154.21, and 77.76 mg P g-1 compared to uninoculated plants (18.1 mg P g-1). CONCLUSIONS: Isolates considered as M- and L-PSB could positively influence wheat above-ground physiology and root traits as high as H-PSB. In addition, non-halo-forming PSB revealed significant PS rates along with positive effects on plant growth as high as halo-forming PSB.


Assuntos
Inoculantes Agrícolas , Fosfatos , Fósforo , Bactérias , Solo , Triticum
3.
Planta ; 255(3): 71, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190912

RESUMO

MAIN CONCLUSION: Some salt stress response mechanisms can translate into sorghum forage yield and thus act as targets for genetic improvement. Sorghum is a drought-tolerant cereal that is widely grown in the vast Africa's arid and semi-arid areas. Apart from drought, salinity is a major abiotic factor that, in addition to natural causes, has been exacerbated by increased poor anthropological activities. The importance of sorghum as a forage crop in saline areas has yet to be fully realized. Despite intraspecific variation in salt tolerance, sorghum is generally moderately salt-tolerant, and its productivity in saline soils can be remarkably limited. This is due to the difficulty of replicating optimal field saline conditions due to the great heterogeneity of salt distribution in the soil. As a promising fodder crop for saline areas, classic phenotype-based selection methods can be integrated with modern -omics in breeding programs to simultaneously address salt tolerance and production. To enable future manipulation, selection, and genetic improvement of sorghum with high yield and salt tolerance, here, we explore the potential positive correlations between the reliable indices of sorghum performance under salt stress at the phenotypic and genotypic level. We then explore the potential role of modern selection and genetic improvement programs in incorporating these linked salt tolerance and yield traits and propose a mechanism for future studies.


Assuntos
Tolerância ao Sal , Sorghum , Grão Comestível , Melhoramento Vegetal , Estresse Salino/genética , Tolerância ao Sal/genética , Sorghum/genética
4.
Microbiol Res ; 285: 127795, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824819

RESUMO

This study aims to investigate the effect of isolated drought-tolerant rhizobacteria, spanning various groups, such as nitrogen-fixing bacteria (NFB), phosphate solubilizing bacteria (PSB), and other plant growth promoting rhizobacteria (PGPR), on the growth of wheat (Triticum durum) plants, focusing on various morphological and physiological responses under moderate drought and low-P availability. Among 343 rhizobacterial morphotypes, 16 exhibited tolerance to NaCl and PEG-6000. These included 8 PSB, 4 NFB, and 4 osmotolerant-PGPR groups, distributed across 14 different genera. Biochemical characterization showcased diverse PGP capabilities, particularly in P solubilization. The dynamic responses of drought-tolerant PSB to salt and PEG-6000-induced drought stress involved variations in organic acid (OA) secretion, with specific acids, including palmitic, lactic, and stearic, playing crucial roles in enhancing available P fractions. Inoculation with rhizobacteria significantly increased both shoot (SDW) and root (RDW) dry weights of wheat plants, as well as rhizosphere available P. PSB11 (Arthrobacter oryzae) emerged as the most effective strain, plausibly due to its positive impact on root morphological traits (length, surface, and volume). Other isolates, PSB10 (Priestia flexa), PSB13 (Bacillus haynesii), and particularly PGPR2 (Arthrobacter pascens) significantly increased shoot P content (up to 68.91 %), with a 2-fold increase in chlorophyll content. The correlation analysis highlighted positive associations between SDW, shoot P content, chlorophyll content index (CCI), and leaf area. Additionally, a negative correlation emerged between microbial biomass P and root morphophysiological parameters. This pattern could be explained by reduced competition between plants and rhizobacteria for accessible P, as indicated by low microbial biomass P and strong plant growth. Our investigation reveals the potential of drought-tolerant rhizobacteria in enhancing wheat resilience to moderate drought and low-P conditions. This is demonstrated through exceptional performance in influencing root architecture, P utilization efficiency, and overall plant physiological parameters. Beyond these outcomes, the innovative isolation procedure employed, targeting rhizobacteria from diverse groups, opens new avenues for targeted isolation techniques. This unique approach contributes to the novelty of our study, offering promising prospects for targeted bioinoculants in mitigating the challenges of drought and P deficiency in wheat cultivation.


Assuntos
Secas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Fosfatos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Fósforo/metabolismo , Estresse Fisiológico
5.
Planta ; 238(1): 107-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23575967

RESUMO

Although the role of phosphatases and antioxidant enzymes have been documented in phosphorus (P) deficiency tolerance, gene expression differences in the nodules of nitrogen fixing legumes should also affect tolerance to this soil constraint. In this study, root nodules were induced by Rhizobium tropici CIAT899 in two Phaseolus vulgaris recombinant inbred lines (RIL); RIL115 (low P-tolerant) and RIL147 (low P-sensitive) under hydroaeroponic culture with sufficient versus deficient P supply. Trehalose 6-P phosphatase and ascorbate peroxidase transcripts were localized within nodules in which O2 permeability was measured. Results indicate that differential tissues-specific expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts within nodules was detected particularly in infected zone and cortical cells. Under P-deficiency, trehalose 6-P phosphatase transcript was increased and mainly localized in infected zone and outer cortex of RIL115 as compared to RIL147. Ascorbate peroxidase transcript was highly expressed under P-sufficiency in the infected zone, inner cortex and vascular traces of RIL115 rather than RIL147. In addition, significant correlations were found between nodule O2 permeability and both peroxidase (r = 0.66*) and trehalose 6-P phosphatase enzyme activities (r = 0.79*) under sufficient and deficient P conditions, respectively. The present findings suggest that the tissue-specific localized trehalose 6-P phosphatase and ascorbate peroxidase transcripts of infected cells and nodule cortex are involved in nitrogen fixation efficiency and are likely to play a role in nodule respiration and adaptation to P-deficiency.


Assuntos
Ascorbato Peroxidases/genética , Oxigênio/metabolismo , Phaseolus/enzimologia , Monoéster Fosfórico Hidrolases/genética , Ascorbato Peroxidases/metabolismo , Eletrólitos/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Fixação de Nitrogênio/genética , Permeabilidade , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Nódulos Radiculares de Plantas/enzimologia
6.
Commun Biol ; 6(1): 1016, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803170

RESUMO

Ensuring plant resilience to drought and phosphorus (P) stresses is crucial to support global food security. The phytobiome, shaped by selective pressures, harbors stress-adapted microorganisms that confer host benefits like enhanced growth and stress tolerance. Intercropping systems also offer benefits through facilitative interactions, improving plant growth in water- and P-deficient soils. Application of microbial consortia can boost the benefits of intercropping, although questions remain about the establishment, persistence, and legacy effects within resident soil microbiomes. Understanding microbe- and plant-microbe dynamics in drought-prone soils is key. This review highlights the beneficial effects of rhizobacterial consortia-based inoculants in legume-cereal intercropping systems, discusses challenges, proposes a roadmap for development of P-solubilizing drought-adapted consortia, and identifies research gaps in crop-microbe interactions.


Assuntos
Fabaceae , Grão Comestível , Fósforo , Secas , Solo
7.
Front Plant Sci ; 14: 1143170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223820

RESUMO

In the Sahara Desert, due to drought and salinity and poor soil fertility, very limited crop choice is available for the farmers to grow crops. Quinoa (Chenopodium quinoa Willd.) has shown promising under such conditions in the South of Morocco, a true representative site of Sahara Desert. Soil organic amendments have the potential to minimize negative effects of soil salinity and improve crop production. Thus, this study aimed to elucidate the impact of nine organic amendments on quinoa (var. ICBA-Q5) growth, productivity, and biochemical parameters under saline irrigation water application (4, 12, and 20 dS·m-1). Results of the experiment indicate a significant effect of organic amendments on major agro-morphological and productivity parameters. Biomass and seed yield tends to decrease with the rise of salinity level, and organic amendments have improved productivity compared to the non-treated control. However, salinity stress alleviation was assessed by determining pigments concentration, proline content, phenolic compounds, and antioxidant activity. Therefore, the action of organic amendments varies from one level of salinity to another. Furthermore, a remarkably significant decrease in total saponin content was reached due to the application of amendments even at high saline conditions (20 dS·m-1). The results demonstrate the possibility of enhancing the productivity of quinoa as an alternative food crop under salinity conditions by using organic amendments and improving the quality of grains (saponin reduction) during the pre-industrialization process.

8.
J Adv Res ; 38: 13-28, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35572398

RESUMO

Background: Increasing crop production to feed a growing population has driven the use of mineral fertilizers to ensure nutrients availability and fertility of agricultural soils. After nitrogen, phosphorus (P) is the second most important nutrient for plant growth and productivity. However, P availability in most agricultural soils is often limited because P strongly binds to soil particles and divalent cations forming insoluble P-complexes. Therefore, there is a constant need to sustainably improve soil P availability. This may include, among other strategies, the application of microbial resources specialized in P cycling, such as phosphate solubilizing bacteria (PSB). This P-mediating bacterial component can improve soil biological fertility and crop production, and should be integrated in well-established formulations to enhance availability and efficiency in use of P. This is of importance to P fertilization, including both organic and mineral P such as rock phosphate (RP) aiming to improve its agronomic efficiency within an integrated crop nutrition system where agronomic profitability of P and PSB can synergistically occur. Aim of Review: The purpose of this review is to discuss critically the important contribution of PSB to crop P nutrition in concert with P fertilizers, with a specific focus on RP. We also highlight the need for PSB bioformulations being a sustainable approach to enhance P fertilizer use efficiency and crop production. Key Scientific Concepts of Review: We first recognize the important contribution of PSB to sustain crop production, which requires a rational approach for both screening and evaluation of PSB enabling an accurate assessment of the bacterial effects both alone and in intertwined interaction with plant roots. Furthermore, we propose new research ideas about the development of microbial bioformulations based on PSB with a particular focus on strains exhibiting synergetic effects with RP.


Assuntos
Fertilizantes , Rizosfera , Bactérias/metabolismo , Produção Agrícola , Minerais/metabolismo , Fosfatos/metabolismo , Solo
9.
Saudi J Biol Sci ; 29(2): 1246-1259, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35241967

RESUMO

The plant faces different pedological and climatic challenges that influence its growth and enhancement. While, plant-microbes interactions throught the rhizosphere offer several privileges to this hotspot in the service of plant, by attracting multi-beneficial mutualistic and symbiotic microorganisms as plant growth-promoting bacteria (PGPB), archaea, mycorrhizal fungi, endophytic fungi, and others…). Currently, numerous investigations showed the beneficial effects of these microbes on growth and plant health. Indeed, rhizospheric microorganisms offer to host plants the essential assimilable nutrients, stimulate the growth and development of host plants, and induce antibiotics production. They also attributed to host plants numerous phenotypes involved in the increase the resistance to abiotic and biotic stresses. The investigations and the studies on the rhizosphere can offer a way to find a biological and sustainable solution to confront these environmental problems. Therefore, the interactions between microbes and plants may lead to interesting biotechnological applications on plant improvement and the adaptation in different climates to obtain a biological sustainable agricultures without the use of chemical fertilizers.

10.
Life (Basel) ; 12(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35629306

RESUMO

Plant-parasitic nematodes (PPNs) are found in citrus plantations throughout the world, but they are considered to be the most problematic pest in Morocco. Citrus fruit quality and yield have been adversely affected by PPNs. Due to data unavailability of nematodes associated with citrus, a detailed survey was conducted in the main citrus-growing regions of Morocco during 2020-2021 to assess the occurrence, distribution, and diversity of PPNs associated with rhizospheres of citrus trees. In addition, some soil properties have also been assessed for their impact on soil properties. Plant-parasitic nematode diversity was calculated using two ecological indexes, the Shannon diversity index (H') and the Evenness index (E). The collected soil and root samples were analyzed, and eleven genera and ten species of plant-parasitic nematodes were identified. The results show that the most predominant PPN species were Tylenchulus semipenetrans (88%), Helicotylenchus spp. (75%), Pratylenchus spp. (47%), Tylenchus spp. (51%), and Xiphinema spp. (31%). The results showed that PPN distributions were correlated with soil physicochemical properties such as soil texture, pH levels, and mineral content. Based on the obtained result, it was concluded that besides the direct effects of the host plant, physicochemical factors of the soil could greatly affect PPN communities in citrus growing orchards.

11.
Saudi J Biol Sci ; 28(7): 3870-3879, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34220242

RESUMO

This study looked at the synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on the Moroccan alfalfa population (Oued Lmaleh) grown under symbiotic nitrogen fixation and limited phosphorus (P) availability. The experiment was conducted in a growth chamber and after two weeks of sowing, the young seedlings were inoculated with Sinorhizobium meliloti Rm41 alone or combined with a suspension of Pseudomonas alkylphenolica PF9. Then, the seedlings were submitted to limited available P (insoluble P using Ca3HPO4) versus a soluble P form (KH2PO4) at a final concentration of 250 µmol P·plant-1·week-1. After two months of P stress, the experiment was evaluated through some agro-physiological and biochemical parameters. The results indicated that the inoculation of alfalfa plants with Sinorhizobium strain alone or combined with Pseudomonas strain significantly (p < 0.001) improved the plant growth, the physiological and the biochemical traits focused in comparison to the uninoculated and P-stressed plants. For most sets of parameters, the improvement was more obvious in plants co-inoculated with both strains than in those inoculated with Sinorhizobium meliloti Rm41 alone. In fact, under limited P-availability, the co-inoculation with two strains significantly (p < 0.01) enhanced the growth of alfalfa plants evaluated by fresh and dry biomasses, plant height and leaf area. The results indicated also that the enhancement noted in plant growth was positively correlated with the shoot and root P contents. Furthermore, the incensement in plant P contents in response to bacterial inoculation improved cell membrane stability, reflected by low malonyldialdehyde (MDA) and electrolyte leakage (EL) contents, and photosynthetic-related parameters such as chlorophyll contents, the maximum quantum yield of PS II (Fv/Fm) and stomatal conductance (gs). Our findings suggest that Pseudomonas alkylphenolica PF9 can act synergistically with Sinorhizobium meliloti Rm41 in promoting alfalfa growth under low-P availability.

12.
Front Plant Sci ; 11: 979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765544

RESUMO

Limited P availability in several agricultural areas is one of the key challenges facing current agriculture. Exploiting P-solubilizing bacteria (PSB) has been an emerging bio-solution for a higher rhizosphere P-availability, meanwhile the above- and below-ground interactions that PSB would trigger remain unclear over plant growing stages. We hypothesized that PSB effects on plant growth may be greater on root traits that positively links with aboveground physiology more than the commonly believed rhizosphere P bio-solubilization. In this study, five contrasting PSB (Pseudomonas spp.) isolates (low "PSB1", moderate "PSB2 and PSB4" and high "PSB3 and PSB5" P-solubilizing capacity "PSC") were used to investigate above- and below-ground responses in wheat fertilized with rock P (RP) under controlled conditions. Our findings show that all PSB isolates increased wheat root traits, particularly PSB5 which increased root biomass and PSB3 that had greater effect on root diameter in 7-, 15- and 42-day old plants. The length, surface and volume of roots significantly increased along with higher rhizosphere available P in 15- and 42-day old plants inoculated with PSB4 and PSB2. Shoot biomass significantly increased with both PSB2 and PSB5. Root and shoot physiology significantly improved with PSB1 (lowest PSC) and PSB4 (moderate PSC), notably shoot total P (78.38%) and root phosphatase activity (390%). Moreover, nutrients acquisition and chlorophyll content increased in inoculated plants and was stimulated (PSB2, PSB4) more than rhizosphere P-solubilization, which was also revealed by the significant above- and below-ground inter-correlations, mainly chlorophyll and both total (R = 0.75, p = 0.001**) and intracellular (R = 0.7, p = 0.000114*) P contents. These findings demonstrate the necessity to timely monitor the plant-rhizosphere continuum responses, which may be a relevant approach to accurately evaluate PSB through considering below- and above-ground relationships; thus enabling unbiased interpretations prior to field applications.

13.
PLoS One ; 12(12): e0190284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29281721

RESUMO

Climate change is increasingly impacting the water deficit over the world. Because of drought and the high pressure of the rising human population, water is becoming a scarce and expensive commodity, especially in developing countries. The identification of crops presenting a higher acclimation to drought stress is thus an important objective in agriculture. The present investigation aimed to assess the adaptation of three Vicia faba genotypes, Aguadulce (AD), Luz d'Otonio (LO) and Reina Mora (RM) to water deficit. Multiple physiological and biochemical parameters were used to analyse the response of the three genotypes to two soil water contents (80% and 40% of field capacity). A significant lower decrease in shoot, root and nodule dry weight was observed for AD compared to LO and RM. The better growth performance of AD was correlated to higher carbon and nitrogen content than in LO and RM under water deficit. Leaf parameters such as relative water content, mass area, efficiency of photosystem II and chlorophyll and carotenoid content were significantly less affected in AD than in LO and RM. Significantly higher accumulation of proline was correlated to the higher performance of AD compared to LO and RM. Additionally, the better growth of AD genotype was related to an important mobilisation of antioxidant enzyme activities such as ascorbate peroxidase and catalase. Taken together, these results allow us to suggest that AD is a water deficit tolerant genotype compared to LO and RM. Our multiple physiological and biochemical analyses show that nitrogen content, leaf proline accumulation, reduced leaf hydrogen peroxide accumulation and leaf antioxidant enzymatic activities (ascorbate peroxidase, guaiacol peroxidase, catalase and polyphenol oxidase) are potential biological markers useful to screen for water deficit resistant Vicia faba genotypes.


Assuntos
Adaptação Fisiológica , Fixação de Nitrogênio , Vicia faba/fisiologia , Água , Genótipo , Oxirredução , Fotossíntese , Vicia faba/genética , Vicia faba/crescimento & desenvolvimento , Vicia faba/metabolismo
14.
Plant Signal Behav ; 8(8)2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733065

RESUMO

Under phosphorus (P) deficiency, sensitivity of the N 2-fixing legumes increases since the large amount of P-dependent carbon and energy turnover required during N 2 fixation are not satisfied. However, despites the fact that these crops have been widely characterized under P-deficiency and a number of tolerance traits have been identified, abilities of the nodules to cope with this environmental constraint have still to be further investigated. Increases both of activity and gene expression of acid phosphatases (APases) are among mechanisms that lead to increase both of N 2 fixation and nodule respiration under P-deficiency. Our findings have revealed that expression of phosphoenol pyruvate phosphatase (PEPase) and trehalose 6P phosphatase (TPP) genes and activities of the corresponding enzymes were positively correlated with increases both of the rhizobial symbiosis efficiency in use of P for N 2 fixation and nodule O 2 permeability. Under P-deficiency, this positive correlation was more significant for the recombinant inbred line (RIL) of Phaseolus vulgaris RIL115 that is tolerant to P-deficiency than the sensitive RIL147. Overall, the present work suggests that the tissue-specific localized PEPase and TPP transcripts of infected cells and nodule cortex play a role in adaptation to P-deficiency and are likely involved in nodule respiration linked to symbiotic nitrogen fixation (SNF).


Assuntos
Fosfatase Ácida/metabolismo , Phaseolus/enzimologia , Nódulos Radiculares de Plantas/enzimologia , Respiração Celular , Fixação de Nitrogênio/genética , Phaseolus/genética , Fósforo/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia
15.
Braz. arch. biol. technol ; 60: e17160325, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951479

RESUMO

ABSTRACT The effect of the water deficit on the fresh and dry weight in the various parts of the plant and on several mineral processes in different symbiotic combinations for the chickpea (Cicer arietinum L.) varieties was studied. The experiment was undertaken in the greenhouse during five weeks.Seedlings were separately inoculated with a suspension of three rhizobia strains and were grown under water deficit (50% of field capacity). Our results showed that the inoculation with the adequate rhizobia may improve the chickpea dry weight by improving the nodules weight, increase NR activity and more K+ accumulation under water deficit. Generally, MC0415 (S1) strain gives the best results, particularly in the dry weight nodules (5% of reduction) and in parallel higher NR activity was notedinthenodule systems (0.8±0.02 μmol NO2-g FW-1h-1) with the combination V46-S1. We note a strong correlation between the dry weights of the various parts of the plantand the studied variables (NRA, Na+, andK+).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA