Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell Proteomics ; 17(2): 205-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203497

RESUMO

Despite high vaccination coverage world-wide, whooping cough, a highly contagious disease caused by Bordetella pertussis, is recently increasing in occurrence suggesting that novel vaccine formulations targeted at the prevention of colonization and transmission should be investigated. To identify new candidates for inclusion in the acellular formulation, we used spontaneously released outer membrane vesicles (OMV)1 as a potential source of key adhesins. The enrichment of Bvg+ OMV with adhesins and the ability of anti-OMV serum to inhibit the adhesion of B. pertussis to lung epithelial cells in vitro were demonstrated. We employed a proteomic approach to identify the differentially expressed proteins in OMV purified from bacteria in the Bvg+ and Bvg- virulence phases, thus comparing the outer membrane protein pattern of this pathogen in its virulent or avirulent state. Six of the most abundant outer membrane proteins were selected as candidates to be evaluated for their adhesive properties and vaccine potential. We generated E. coli strains singularly expressing the selected proteins and assessed their ability to adhere to lung epithelial cells in vitro Four out of the selected proteins conferred adhesive ability to E. coli Three of the candidates were specifically detected by anti-OMV mouse serum suggesting that these proteins are immunogenic antigens able to elicit an antibody response when displayed on the OMV. Anti-OMV serum was able to inhibit only BrkA-expressing E. coli adhesion to lung epithelial cells. Finally, stand-alone immunization of mice with recombinant BrkA resulted in significant protection against infection of the lower respiratory tract after challenge with B. pertussis Taken together, these data support the inclusion of BrkA and possibly further adhesins to the current acellular pertussis vaccines to improve the impact of vaccination on the bacterial clearance.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Bordetella pertussis/patogenicidade , Membrana Celular/imunologia , Células Epiteliais/fisiologia , Interações Hospedeiro-Patógeno , Células A549 , Animais , Vacinas Bacterianas , Adesão Celular , Células Epiteliais/microbiologia , Feminino , Humanos , Pulmão/citologia , Camundongos Endogâmicos BALB C , Proteômica , Coqueluche/prevenção & controle
2.
J Biol Chem ; 286(16): 14588-97, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21367860

RESUMO

Streptococcus pneumoniae expresses on its surface adhesive pili, involved in bacterial attachment to epithelial cells and virulence. The pneumococcal pilus is composed of three proteins, RrgA, RrgB, and RrgC, each stabilized by intramolecular isopeptide bonds and covalently polymerized by means of intermolecular isopeptide bonds to form an extended fiber. RrgB is the pilus scaffold subunit and is protective in vivo in mouse models of sepsis and pneumonia, thus representing a potential vaccine candidate. The crystal structure of a major RrgB C-terminal portion featured an organization into three independently folded protein domains (D2-D4), whereas the N-terminal D1 domain (D1) remained unsolved. We have tested the four single recombinant RrgB domains in active and passive immunization studies and show that D1 is the most effective, providing a level of protection comparable with that of the full-length protein. To elucidate the structural features of D1, we solved the solution structure of the recombinant domain by NMR spectroscopy. The spectra analysis revealed that D1 has many flexible regions, does not contain any intramolecular isopeptide bond, and shares with the other domains an Ig-like fold. In addition, we demonstrated, by site-directed mutagenesis and complementation in S. pneumoniae, that the D1 domain contains the Lys residue (Lys-183) involved in the formation of the intermolecular isopeptide bonds and pilus polymerization. Finally, we present a model of the RrgB protein architecture along with the mapping of two surface-exposed linear epitopes recognized by protective antisera.


Assuntos
Proteínas de Fímbrias/química , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias/química , Adesão Celular , Modelos Animais de Doenças , Epitopos/química , Proteínas de Fímbrias/genética , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Sepse/metabolismo
3.
Infect Immun ; 80(1): 451-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083702

RESUMO

Streptococcus pneumoniae pilus 1 is present in 30 to 50% of invasive disease-causing strains and is composed of three subunits: the adhesin RrgA, the major backbone subunit RrgB, and the minor ancillary protein RrgC. RrgB exists in three distinct genetic variants and, when used to immunize mice, induces an immune response specific for each variant. To generate an antigen able to protect against the infection caused by all pilus-positive S. pneumoniae strains, we engineered a fusion protein containing the three RrgB variants (RrgB321). RrgB321 elicited antibodies against proteins from organisms in the three clades and protected mice against challenge with piliated pneumococcal strains. RrgB321 antisera mediated complement-dependent opsonophagocytosis of piliated strains at levels comparable to those achieved with the PCV7 glycoconjugate vaccine. These results suggest that a vaccine composed of RrgB321 has the potential to cover 30% or more of all pneumococcal strains and support the inclusion of this fusion protein in a multicomponent vaccine against S. pneumoniae.


Assuntos
Atividade Bactericida do Sangue , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/imunologia , Proteínas Opsonizantes/sangue , Vacinas Pneumocócicas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas do Sistema Complemento/imunologia , Feminino , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
4.
Infect Immun ; 77(7): 2957-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19433540

RESUMO

Streptococcus pneumoniae sortase A (SrtA) is a transpeptidase that is highly conserved among pneumococcal strains, whose involvement in adhesion/colonization has been reported. We found that intraperitoneal immunization with recombinant SrtA conferred to mice protection against S. pneumoniae intraperitoneal challenge and that the passive transfer of immune serum before intraperitoneal challenge was also protective. Moreover, by using the intranasal challenge model, we observed a significant reduction of bacteremia when mice were intraperitoneally immunized with SrtA, while a moderate decrease of lung infection was achieved by intranasal immunization, even though no influence on nasopharynx colonization was seen. Taken together, our results suggest that SrtA is a good candidate for inclusion in a multicomponent, protein-based, pneumococcal vaccine.


Assuntos
Aminoaciltransferases/imunologia , Proteínas de Bactérias/imunologia , Cisteína Endopeptidases/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Antibacterianos/uso terapêutico , Bacteriemia/prevenção & controle , Portador Sadio/prevenção & controle , Feminino , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/microbiologia , Pneumonia Pneumocócica/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
5.
Methods Mol Biol ; 1969: 205-215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30877679

RESUMO

Meningococcal Antigen Typing System (MATS) is the combination of a sandwich ELISA (Enzyme Linked Immunosorbent Assay) developed to estimate the level of expression and immunoreactivity of the antigen components (fHbp, NHBA, and NadA) of the 4CMenB vaccine (Bexsero, GSK Vaccines) in circulating, serogroup B meningococcal (MenB) strains, with the molecular typing of PorA, the main antigenic component in the outer membrane vesicles (OMV). MATS has been proven to be a good surrogate of the accepted correlate of protection for meningococcus (hSBA), thus providing a quick, conservative and reproducible method to assess vaccine coverage. The method has been successfully transferred and standardized in several public health laboratories across Europe, North America, and Australia and used to screen thousands of isolates all over the world. Here we describe the sandwich ELISA method applied to assess the expression and cross-reactivity of fHbp, NHBA, and NadA in MenB isolates.


Assuntos
Antígenos de Bactérias/análise , Ensaio de Imunoadsorção Enzimática/métodos , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Antígenos de Bactérias/imunologia , Austrália/epidemiologia , Reações Cruzadas , Europa (Continente)/epidemiologia , Humanos , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/microbiologia , Vacinas Meningocócicas/administração & dosagem , América do Norte/epidemiologia , Vacinação
6.
Infect Immun ; 75(2): 1059-62, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17145945

RESUMO

Streptococcus pneumoniae is a major public health threat worldwide. The recent discovery that this pathogen possesses pili led us to investigate their protective abilities in a mouse model of intraperitoneal infection. Both active and passive immunization with recombinant pilus subunits afforded protection against lethal challenge with the S. pneumoniae serotype 4 strain TIGR4.


Assuntos
Antígenos de Bactérias/imunologia , Fímbrias Bacterianas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Bacteriemia , Modelos Animais de Doenças , Feminino , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Vacinação , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
7.
Microbiology (Reading) ; 152(Pt 10): 2919-2930, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17005973

RESUMO

With the steadily increasing occurrence of antibiotic resistance in bacteria, there is a great need for new antibacterial compounds. The approach described here involves targeting virulence-related bacterial type IV secretion systems (TFSSs) with small-molecule inhibitors. The cag TFSS of Helicobacter pylori was chosen as a model, and novel inhibitors directed against the cag VirB11-type ATPase Cagalpha were identified. The cag genes encode proteins that are components of a contact-dependent secretion system used by the bacterium to translocate the effector molecule CagA into host cells. Translocated CagA is associated with severe gastritis, and carcinoma. Furthermore, functional TFSSs and immunodominant CagA play a role in interleukin (IL)-8 induction, which is an important factor for chronic inflammation. Inhibitors of Cagalpha were identified by high-throughput screening of chemical libraries that comprised 524 400 small molecules. The ATPase activity of Cagalpha was inhibited by the selected compounds in an in vitro enzymic assay using the purified enzyme. The most active compound, CHIR-1, reduced TFSS function to an extent that cellular effects on AGS cells mediated by CagA were virtually undetectable, while reduced levels of IL-8 induction were observed. Gastric colonization by CHIR-1-pre-treated bacteria was found to be impaired in a dose-dependent manner using a mouse model of infection. Small-molecule Cagalpha inhibitors, the first described inhibitors of a TFSS, are potential candidates for the development of new antibacterial compounds that may lead to alternative medical treatments. The compounds are expected to impose weak selective pressure, since they target virulence functions. Moreover, the targeted virulence protein is conserved in a variety of bacterial pathogens. Additionally, TFSS inhibitors are potent tools to study the biology of TFSSs.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antibacterianos/farmacologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Helicobacter pylori/enzimologia , Helicobacter pylori/patogenicidade , Animais , Antibacterianos/isolamento & purificação , Linhagem Celular Tumoral , Contagem de Colônia Microbiana , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/isolamento & purificação , Células Epiteliais/microbiologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/prevenção & controle , Helicobacter pylori/efeitos dos fármacos , Humanos , Interleucina-8/biossíntese , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA