Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 24(4): 583-97, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27232198

RESUMO

BACKGROUND: In computed tomography (CT), the spot geometry is one of the main sources of error in CT images. Since X-rays do not arise from a point source, artefacts are produced. In particular there is a penumbra effect, leading to poorly defined edges within a reconstructed volume. Penumbra models can be simulated given a fixed spot geometry and the known experimental setup. OBJECTIVE: This paper proposes to use a penumbra model, derived from Beer's law, both to confirm spot geometry from penumbra data, and to quantify blurring in the image. METHODS: Two models for the spot geometry are considered; one consists of a single Gaussian spot, the other is a mixture model consisting of a Gaussian spot together with a larger uniform spot. RESULTS: The model consisting of a single Gaussian spot has a poor fit at the boundary. The mixture model (which adds a larger uniform spot) exhibits a much improved fit. The parameters corresponding to the uniform spot are similar across all powers, and further experiments suggest that the uniform spot produces only soft X-rays of relatively low-energy. CONCLUSIONS: Thus, the precision of radiographs can be estimated from the penumbra effect in the image. The use of a thin copper filter reduces the size of the effective penumbra.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Tomografia Computadorizada por Raios X/métodos , Dinâmica não Linear
2.
ACS Sens ; 5(8): 2497-2502, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32618188

RESUMO

Inspired by the miniaturization and efficiency of the sensors for telemetry, we have developed a device that provides the functionalities of laboratory magnetic stirring and integrated multisensor monitoring of various chemical reaction parameters. The device, called "Smart Stirrer", when immersed in a solution, can in situ monitor physical properties of the chemical reaction such as the temperature, conductivity, visible spectrum, opaqueness, stirring rate, and viscosity. This data is transmitted real-time over a wireless connection to an external system, such as a PC or smartphone. The flexible open-source software architecture allows effortless programming of the operation parameters of the Smart Stirrer in accordance with the end-user needs. The concept of the Smart Stirrer device with an integrated process monitoring system has been demonstrated in a series of experiments showing its capability for many hours of continuous telemetry with fine accuracy and a high data rate. Such a device can be used in conventional research laboratories, industrial production lines, flow reactors, and others where it can log the state of the process to ensure repeatability and operational consistency.


Assuntos
Smartphone , Software , Desenho de Equipamento , Fenômenos Magnéticos , Monitorização Fisiológica
3.
Materials (Basel) ; 12(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757114

RESUMO

The formulation of a high dielectric permittivity ceramic/polymer composite feedstock for daylight vat photopolymerization 3D printing (3DP) is demonstrated, targeting 3DP of devices for microwave and THz applications. The precursor is composed of a commercial visible light photo-reactive polymer (VIS-curable photopolymer) and dispersed titanium dioxide (TiO2, TO) ceramic nano-powder or calcium copper titanate (CCT) micro-powder. To provide consistent 3DP processing from the formulated feedstocks, the carefully chosen dispersant performed the double function of adjusting the overall viscosity of the photopolymer and provided good matrix-to-filler bonding. Depending on the ceramic powder content, the optimal viscosities for reproducible 3DP with resolution better than 100 µm were η(TO) = 1.20 ± 0.02 Pa.s and η (CCT) = 0.72 ± 0.05 Pa.s for 20% w/v TO/resin and 20% w/v CCT/resin composites at 0.1 s-1 respectively, thus showing a significant dependence of the "printability" on the dispersed particle sizes. The complex dielectric properties of the as-3D printed samples from pure commercial photopolymer and the bespoke ceramic/photopolymer mixes are investigated at 2.5 GHz, 5 GHz, and in the 12-18 GHz frequency range. The results show that the addition of 20% w/v of TO and CCT ceramic powder to the initial photopolymer increased the real part of the permittivity of the 3DP composites from ε' = 2.7 ± 0.02 to ε'(TO) = 3.88 ± 0.02 and ε'(CCT) = 3.5 ± 0.02 respectively. The present work can be used as a guideline for high-resolution 3DP of structures possessing high-ε.

4.
J Vis Exp ; (123)2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28518077

RESUMO

Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.


Assuntos
Álcool de Polivinil/química , Impressão/métodos , Vidro , Concentração de Íons de Hidrogênio , Tinta , Reologia , Soluções , Tensão Superficial , Viscosidade
5.
Mater Sci Eng C Mater Biol Appl ; 47: 237-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492194

RESUMO

A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT).


Assuntos
Osso e Ossos/efeitos dos fármacos , Durapatita/química , Força Compressiva , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura/métodos , Porosidade , Pós/química , Impressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA