Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37671530

RESUMO

Previous studies have shown that selection for starvation resistance in Drosophila melanogaster results in delayed eclosion and increased adult fat stores. It is assumed that these traits are caused by the starvation selection pressure, but its mechanism is unknown. We found that our starvation-selected (SS) population stores more fat during larval development and has extended larval development and pupal development time. Developmental checkpoints in the third instar associated with ecdysteroid hormone pulses are increasingly delayed. The delay in the late larval period seen in the SS population is indicative of reduced and delayed ecdysone signaling. An enzyme immunoassay for ecdysteroids (with greatest affinity to the metabolically active 20-hydroxyecdysone and the α-ecdysone precursor) confirmed that the SS population had reduced and delayed hormone production compared with that of fed control (FC) flies. Feeding third instar larvae on food supplemented with α-ecdysone partially rescued the developmental delay and reduced subsequent adult starvation resistance. This work suggests that starvation selection causes reduced and delayed production of ecdysteroids in the larval stage and affects the developmental delay phenotype that contributes to subsequent adult fat storage and starvation resistance.


Assuntos
Ecdisona , Ecdisteroides , Animais , Ecdisona/genética , Drosophila melanogaster/genética , Larva , Fenótipo
2.
Mod Pathol ; 33(2): 255-262, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31273316

RESUMO

The percentage of sarcomatoid component has an impact on prognosis in patients with biphasic malignant pleural mesothelioma. Recent study showed that the transitional pattern similar to sarcomatoid component of malignant mesothelioma has negative prognostic significance. Practice guidelines recommend quantification of sarcomatoid component despite poor diagnostic reproducibility of biphasic mesothelioma among thoracic pathologists. The aim of this study was to determine the interobserver agreement in the quantification of sarcomatoid component, and in the diagnosis of a transitional component in the biphasic malignant mesothelioma. Thirteen experts in thoracic pathology reviewed the representative H&E and cytokeratin whole-slide images of the 54 biphasic mesotheliomas, without knowledge of BAP1 or p16 deletion status, and completed the survey of 25 questions. The overall interobserver agreement in the assessment of the percentage of the sarcomatoid component in 25% increments was good (wK = 0.62). Excellent agreement was present in 14 of 54 cases (26%), and 3 cases were unanimously scored. Excellent agreement was reached for the cases with 0-24% and > 75% of the sarcomatoid component.The most commonly used criteria for the diagnosis of sarcomatoid component were malignant spindle cells, frank sarcomatoid features and high N/C ratio. The overall interobserver agreement for transitional pattern was fair (wK = 0.40). Unanimous opinion about the absence of transitional pattern was observed in only one case. At least 70% agreement regarding the presence of transitional pattern was observed in 12 cases, with the rest of the cases showing a wide range of disagreement. Morphologic characteristics that favor transitional pattern over non-transitional include sheet-like growth of cohesive, plump, elongated epithelioid cells with well-defined cell borders and a tendency to transition into spindle cells. Our study defined precise morphologic criteria that may be used in the differential diagnosis between transitional pattern and other mesothelioma subtypes including sarcomatoid and epithelioid.


Assuntos
Mesotelioma Maligno/patologia , Neoplasias Complexas Mistas/patologia , Patologistas , Neoplasias Pleurais/patologia , Sarcoma/patologia , Biópsia , Diagnóstico Diferencial , Humanos , Mesotelioma Maligno/cirurgia , Neoplasias Complexas Mistas/cirurgia , Variações Dependentes do Observador , Neoplasias Pleurais/cirurgia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
3.
Mol Biol Evol ; 35(1): 50-65, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309688

RESUMO

Experimental evolution affords the opportunity to investigate adaptation to stressful environments. Studies combining experimental evolution with whole-genome resequencing have provided insight into the dynamics of adaptation and a new tool to uncover genes associated with polygenic traits. Here, we selected for starvation resistance in populations of Drosophila melanogaster for over 80 generations. In response, the starvation-selected lines developed an obese condition, storing nearly twice the level of total lipids than their unselected controls. Although these fats provide a ∼3-fold increase in starvation resistance, the imbalance in lipid homeostasis incurs evolutionary cost. Some of these tradeoffs resemble obesity-associated pathologies in mammals including metabolic depression, low activity levels, dilated cardiomyopathy, and disrupted sleeping patterns. To determine the genetic basis of these traits, we resequenced genomic DNA from the selected lines and their controls. We found 1,046,373 polymorphic sites, many of which diverged between selection treatments. In addition, we found a wide range of genetic heterogeneity between the replicates of the selected lines, suggesting multiple mechanisms of adaptation. Genome-wide heterozygosity was low in the selected populations, with many large blocks of SNPs nearing fixation. We found candidate loci under selection by using an algorithm to control for the effects of genetic drift. These loci were mapped to a set of 382 genes, which associated with many processes including nutrient response, catabolic metabolism, and lipid droplet function. The results of our study speak to the evolutionary origins of obesity and provide new targets to understand the polygenic nature of obesity in a unique model system.


Assuntos
Drosophila melanogaster/genética , Obesidade/genética , Inanição/genética , Aclimatação , Adaptação Fisiológica/genética , Animais , Evolução Molecular Direcionada/métodos , Modelos Animais de Doenças , Evolução Molecular , Genoma de Inseto/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Herança Multifatorial , Seleção Genética/genética
4.
Mol Ecol ; 28(1): 33-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30672643

RESUMO

Ticks are simultaneously fascinating and disgusting. Anyone who has removed a bloated blood-filled tick from themselves or a pet understands the "yuck" factor they arouse. But ticks are also fascinating from a physiological perspective. Ticks are the ultimate sit-and-wait predators. Female ixodid ticks (hard ticks) consume a single meal during each life stage (larva, nymph and adult), which means only three lifetime meals over a 1- to 3-year lifespan. Most males do not feed as adults, so they only feed twice. Thus, prolonged starvation is a quintessential aspect of tick life history. Although ticks have been widely studied for their importance as disease vectors, the vast majority of research has focused on tick-host interactions. Ixodid ticks spend the overwhelming majority of their lives off their hosts, but little is known about these periods. A new study begins to fill in some of these knowledge gaps. In this issue of Molecular Ecology, Rosendale, Dunlevy, Marshall, and Benoit examine physiological, behavioural and transcriptomic changes occurring during long-term starvation of the American dog tick, Dermacentor variabilis. Their work provides insights into how ticks are able to go so long between meals and how they prepare for their next meal.


Assuntos
Dermacentor/genética , Doenças do Cão/parasitologia , Ixodes/genética , Larva/genética , Animais , Dermacentor/patogenicidade , Dermacentor/fisiologia , Doenças do Cão/genética , Cães , Ixodes/patogenicidade , Ixodes/fisiologia , Larva/patogenicidade , Larva/fisiologia , Ninfa/genética , Ninfa/patogenicidade , Ninfa/fisiologia
5.
J Exp Biol ; 222(Pt 3)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30606795

RESUMO

Food shortage represents a primary challenge to survival, and animals have adapted diverse developmental, physiological and behavioral strategies to survive when food becomes unavailable. Starvation resistance is strongly influenced by ecological and evolutionary history, yet the genetic basis for the evolution of starvation resistance remains poorly understood. The fruit fly Drosophila melanogaster provides a powerful model for leveraging experimental evolution to investigate traits associated with starvation resistance. While control populations only live a few days without food, selection for starvation resistance results in populations that can survive weeks. We have previously shown that selection for starvation resistance results in increased sleep and reduced feeding in adult flies. Here, we investigate the ontogeny of starvation resistance-associated behavioral and metabolic phenotypes in these experimentally selected flies. We found that selection for starvation resistance resulted in delayed development and a reduction in metabolic rate in larvae that persisted into adulthood, suggesting that these traits may allow for the accumulation of energy stores and an increase in body size within these selected populations. In addition, we found that larval sleep was largely unaffected by starvation selection and that feeding increased during the late larval stages, suggesting that experimental evolution for starvation resistance produces developmentally specified changes in behavioral regulation. Together, these findings reveal a critical role for development in the evolution of starvation resistance and indicate that selection can selectively influence behavior during defined developmental time points.


Assuntos
Metabolismo Basal , Drosophila melanogaster/fisiologia , Comportamento Alimentar , Sono/fisiologia , Inanição/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino
6.
Mol Ecol ; 27(17): 3525-3540, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30051644

RESUMO

Water availability is a major environmental challenge to a variety of terrestrial organisms. In insects, desiccation tolerance varies predictably over spatial and temporal scales and is an important physiological determinant of fitness in natural populations. Here, we examine the dynamics of desiccation tolerance in North American populations of Drosophila melanogaster using: (a) natural populations sampled across latitudes and seasons; (b) experimental evolution in field mesocosms over seasonal time; (c) genome-wide associations to identify SNPs/genes associated with variation for desiccation tolerance; and (d) subsequent analysis of patterns of clinal/seasonal enrichment in existing pooled sequencing data of populations sampled in both North America and Australia. A cline in desiccation tolerance was observed, for which tolerance exhibited a positive association with latitude; tolerance also varied predictably with culture temperature, demonstrating a significant degree of thermal plasticity. Desiccation tolerance evolved rapidly in field mesocosms, although only males showed differences in desiccation tolerance between spring and autumn collections from natural populations. Water loss rates did not vary significantly among latitudinal or seasonal populations; however, changes in metabolic rates during prolonged exposure to dry conditions are consistent with increased tolerance in higher latitude populations. Genome-wide associations in a panel of inbred lines identified twenty-five SNPs in twenty-one loci associated with sex-averaged desiccation tolerance, but there is no robust signal of spatially varying selection on genes associated with desiccation tolerance. Together, our results suggest that desiccation tolerance is a complex and important fitness component that evolves rapidly and predictably in natural populations.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Drosophila melanogaster/genética , Genética Populacional , Animais , Austrália , Drosophila melanogaster/fisiologia , Estudos de Associação Genética , América do Norte , Polimorfismo de Nucleotídeo Único , Estações do Ano , Análise Espaço-Temporal , Temperatura
7.
Mol Ecol ; 25(3): 741-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615085

RESUMO

Preadult determinants of adult fitness and behaviour have been documented in a variety of organisms with complex life cycles, but little is known about expression patterns of genes underlying these adult traits. We explored the effects of differences in egg-to-adult development time on adult transcriptome and cuticular hydrocarbon variation in order to understand the nature of the genetic correlation between preadult development time and premating isolation between populations of Drosophila mojavensis reared in different host cactus environments. Transcriptome variation was analysed separately in flies reared on each host and revealed that hundreds of genes in adults were differentially expressed (FDR P < 0.05) due to development time differences. For flies reared on pitaya agria cactus, longer preadult development times caused increased expression of genes in adults enriched for ribosome production, protein metabolism, chromatin remodelling and regulation of alternate splicing and transcription. Baja California flies reared on organ pipe cactus showed fewer differentially expressed genes in adults due to longer preadult development time, but these were enriched for ATP synthesis and the TCA cycle. Mainland flies reared on organ pipe cactus with shorter development times showed increased transcription of genes enriched for mitochondria and energy production, protein synthesis and glucose metabolism: adults with longer development times had increased expression of genes enriched for adult life span, cuticle proteins and ion binding, although most differentially expressed genes were unannotated. Differences due to population, sex, mating status and their interactions were also assessed. Adult cuticular hydrocarbon profiles also showed shifts due to egg-to-adult development time and were influenced by population and mating status. These results help to explain why preadult life history variation determines subsequent expression of the adult transcriptome along with traits involved with reproductive isolation and revealed previously undocumented connections between genetic and environmental influences over the entire life cycle in this desert insect.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/genética , Ecossistema , Genética Populacional , Transcriptoma , Animais , Cactaceae , Feminino , Estágios do Ciclo de Vida , Masculino , México
8.
Histopathology ; 69(3): 492-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26864248

RESUMO

AIMS: To determine whether usual interstitial pneumonia (UIP) pattern fibrosis is seen in asbestosis. METHODS AND RESULTS: The occurrence of UIP pattern fibrosis was studied in four asbestos cohorts systematically referred following postmortem to the UK Pneumoconiosis Unit, Cardiff. The combined exposed workforce comprised >25 000 persons. Over the 17-year period, 233 subjects were identified; 210 had degrees of interstitial fibrosis with a fibrotic non-specific interstitial pneumonia pattern and subpleural accentuation, and three showed UIP pattern fibrosis. All three of these cases showed grade 4 fibrosis (honeycombing) with no asbestos fibre dose-response correlation. A Poisson distribution of probability analysis indicated that the observed cases of UIP in this workforce could be wholly accounted for by the prevalence of idiopathic pulmonary fibrosis (IPF) in the population. CONCLUSIONS: UIP pattern fibrosis is rarely observed in asbestos-exposed subjects, and shows no dose-response correlation with asbestos fibres on mineral analysis; this points to an alternative disease, such as IPF. The results indicate that UIP pattern fibrosis should not be regarded as genuine asbestosis, irrespective of the status of asbestos biomarkers, and this impacts upon the postmortem handling of asbestos-related deaths.


Assuntos
Asbestose/patologia , Fibrose Pulmonar Idiopática/patologia , Asbestose/complicações , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/etiologia , Incidência , Estudos Retrospectivos
9.
Am J Physiol Regul Integr Comp Physiol ; 309(6): R658-67, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26136533

RESUMO

There is a clear link between obesity and cardiovascular disease, but the complexity of this interaction in mammals makes it difficult to study. Among the animal models used to investigate obesity-associated diseases, Drosophila melanogaster has emerged as an important platform of discovery. In the laboratory, Drosophila can be made obese through lipogenic diets, genetic manipulations, and adaptation to evolutionary stress. While dietary and genetic changes that cause obesity in flies have been demonstrated to induce heart dysfunction, there have been no reports investigating how obesity affects the heart in laboratory-evolved populations. Here, we studied replicated populations of Drosophila that had been selected for starvation resistance for over 65 generations. These populations evolved characteristics that closely resemble hallmarks of metabolic syndrome in mammals. We demonstrate that starvation-selected Drosophila have dilated hearts with impaired contractility. This phenotype appears to be correlated with large fat deposits along the dorsal cuticle, which alter the anatomical position of the heart. We demonstrate a strong relationship between fat storage and heart dysfunction, as dilation and reduced contractility can be rescued through prolonged fasting. Unlike other Drosophila obesity models, the starvation-selected lines do not exhibit excessive intracellular lipid deposition within the myocardium and rather store excess triglycerides in large lipid droplets within the fat body. Our findings provide a new model to investigate obesity-associated heart dysfunction.


Assuntos
Cardiopatias/etiologia , Obesidade/complicações , Inanição/fisiopatologia , Animais , Drosophila melanogaster , Corpo Adiposo/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Larva , Metabolismo dos Lipídeos/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/fisiopatologia , Triglicerídeos/metabolismo
10.
Mol Ecol ; 24(1): 151-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25442828

RESUMO

We compared whole transcriptome variation in six pre-adult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants to understand how differences in gene expression influence standing life history variation. We used singular value decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pairwise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and ageing. Host cactus effects on female gene expression revealed population- and stage-specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behaviour gene expression levels. In 3- to 6-day-old virgin females, significant upregulation of genes associated with meiosis and oogenesis was accompanied by downregulation of genes associated with somatic maintenance, evidence for a life history trade-off. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome-wide influences on life history variation in natural populations.


Assuntos
Drosophila/genética , Meio Ambiente , Estágios do Ciclo de Vida/genética , Transcriptoma , Animais , Cactaceae , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , México , Dados de Sequência Molecular , Análise de Sequência de DNA
11.
J Exp Biol ; 217(Pt 17): 3122-32, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24948636

RESUMO

Animals respond to changes in food availability by adjusting sleep and foraging strategies to optimize their fitness. Wild populations of the fruit fly, Drosophila melanogaster, display highly variable levels of starvation resistance that are dependent on geographic location, food availability and evolutionary history. How behaviors that include sleep and feeding vary in Drosophila with increased starvation resistance is unclear. We have generated starvation-resistant flies through experimental evolution to investigate the relationship between foraging behaviors and starvation resistance. Outbred populations of D. melanogaster were selected for starvation resistance over 60 generations. This selection process resulted in flies with a threefold increase in total lipids that survive up to 18 days without food. We tested starvation-selected (S) flies for sleep and feeding behaviors to determine the effect that selection for starvation resistance has had on foraging behavior. Flies from three replicated starvation-selected populations displayed a dramatic reduction in feeding and prolonged sleep duration compared to fed control (F) populations, suggesting that modified sleep and feeding may contribute to starvation resistance. A prolonged larval developmental period contributes to the elevated energy stores present in starvation-selected flies. By preventing S larvae from feeding longer than F larvae, we were able to reduce energy stores in adult S flies to the levels seen in adult F flies, thus allowing us to control for energy storage levels. However, the reduction of energy stores in S flies fails to generate normal sleep and feeding behavior seen in F flies with similar energy stores. These findings suggest that the behavioral changes observed in S flies are due to genetic regulation of behavior rather than elevated lipid levels. Testing S-F hybrid individuals for both feeding and sleep revealed a lack of correlation between food consumption and sleep duration, indicating further independence in genetic factors underlying the sleep and feeding changes observed in S flies. Taken together, these findings provide evidence that starvation selection results in prolonged sleep and reduced feeding through a mechanism that is independent of elevated energy stores. These findings suggest that changes in both metabolic function and behavior contribute to the increase in starvation resistance seen in flies selected for starvation resistance.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Comportamento Alimentar/fisiologia , Sono/genética , Fenômenos Fisiológicos da Nutrição Animal/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Metabolismo Energético , Larva/fisiologia , Seleção Genética , Sono/fisiologia , Inanição/fisiopatologia
12.
Sci Rep ; 14(1): 14804, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926516

RESUMO

The blacklegged tick, Ixodes scapularis, is an ectoparasitic arachnid and vector for infectious diseases, including Lyme borreliosis. Here, we investigate the diurnal activity and respiration of wild-caught and lab-reared adult ticks with long-term video recording, multi-animal tracking and high-resolution respirometry. We find male and female ticks are in a more active, more arousable state during circadian night. We find respiration is augmented by light, with dark onset triggering more frequent bouts of discontinuous gas exchange and a higher overall volume of CO2 respired. Observed inactivity during the day meets the criteria of sleep: homeostatic in nature, rapidly reversible, a characteristic pose, and reduced arousal threshold. Our findings indicate that blacklegged ticks are in a distinct, heightened state of activity and arousability during night and in dark, suggesting this period may carry higher risk for tick bites and subsequent contraction of tick-borne diseases.


Assuntos
Ritmo Circadiano , Ixodes , Locomoção , Respiração , Animais , Ixodes/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Masculino , Locomoção/fisiologia , Nível de Alerta/fisiologia
13.
Mol Ecol ; 22(10): 2698-715, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23505972

RESUMO

We used whole-transcriptome microarrays to assess changes in gene expression and monitored mortality rates and epicuticular hydrocarbons (CHCs) in response to desiccation stress in four natural populations of Drosophila mojavensis from Baja California and mainland Mexico. Desiccation had the greatest effect on gene expression, followed by biogeographical variation at regional and population levels. Genes involved in environmental sensing and cuticular structure were up-regulated in dry conditions, while genes involved in transcription itself were down-regulated. Flies from Baja California had higher expression of reproductive and mitochondrial genes, suggesting that these populations have greater fecundity and higher metabolic rates. Host plant differences had a surprisingly minor effect on the transcriptome. In most cases, desiccation-caused mortality was greater in flies reared on fermenting cactus tissues than that on laboratory media. Water content of adult females and males was significantly different and was lower in Baja California males. Different groups of CHCs simultaneously increased and decreased in amounts due to desiccation exposure of 9 and 18 h and were population-specific and dependent on larval rearing substrates. Overall, we observed that changes in gene expression involved a coordinated response of behavioural, cuticular and metabolic genes. Together with differential expression of cuticular hydrocarbons, this study revealed some of the mechanisms that have allowed D. mojavensis to exploit its harsh desert conditions. Certainly, for D. mojavensis that uses different host plants, population-level understanding of responses to stressors associated with future climate change in desert regions must be evaluated across geographical and local ecological scales.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica/fisiologia , Hidrocarbonetos/metabolismo , Fenótipo , Análise de Variância , Animais , Peso Corporal , Biologia Computacional , Desidratação , Clima Desértico , Drosophila/metabolismo , Drosophila/fisiologia , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Masculino , México , Análise em Microsséries , Anotação de Sequência Molecular , Mortalidade , Especificidade da Espécie , Fatores de Tempo
14.
Crit Rev Toxicol ; 43(2): 154-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23346982

RESUMO

This review provides a basis for substantiating both kinetically and pathologically the differences between chrysotile and amphibole asbestos. Chrysotile, which is rapidly attacked by the acid environment of the macrophage, falls apart in the lung into short fibers and particles, while the amphibole asbestos persist creating a response to the fibrous structure of this mineral. Inhalation toxicity studies of chrysotile at non-lung overload conditions demonstrate that the long (>20 µm) fibers are rapidly cleared from the lung, are not translocated to the pleural cavity and do not initiate fibrogenic response. In contrast, long amphibole asbestos fibers persist, are quickly (within 7 d) translocated to the pleural cavity and result in interstitial fibrosis and pleural inflammation. Quantitative reviews of epidemiological studies of mineral fibers have determined the potency of chrysotile and amphibole asbestos for causing lung cancer and mesothelioma in relation to fiber type and have also differentiated between these two minerals. These studies have been reviewed in light of the frequent use of amphibole asbestos. As with other respirable particulates, there is evidence that heavy and prolonged exposure to chrysotile can produce lung cancer. The importance of the present and other similar reviews is that the studies they report show that low exposures to chrysotile do not present a detectable risk to health. Since total dose over time decides the likelihood of disease occurrence and progression, they also suggest that the risk of an adverse outcome may be low with even high exposures experienced over a short duration.


Assuntos
Amiantos Anfibólicos/efeitos adversos , Asbestos Serpentinas/efeitos adversos , Asbestose/etiologia , Amiantos Anfibólicos/farmacocinética , Asbestos Serpentinas/farmacocinética , Asbestose/metabolismo , Asbestose/patologia , Relação Dose-Resposta a Droga , Humanos , Exposição por Inalação , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Tamanho da Partícula , Neoplasias Pleurais/epidemiologia , Neoplasias Pleurais/etiologia
15.
J Exp Biol ; 216(Pt 3): 399-406, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23038728

RESUMO

Within the complex life cycle of holometabolous insects, nutritional resources acquired during larval feeding are utilized by the pupa and the adult. The broad features of the transfer of larval resources to the pupae and the allocation of larval resources in the adult have been described by studies measuring and tracking macronutrients at different developmental stages. However, the mechanisms of resource transfer from the larva and the factors regulating the allocation of these resources in the adult between growth, reproduction and somatic maintenance are unknown. Drosophila melanogaster presents a tractable system in which to test cellular and tissue mechanisms of resource acquisition and allocation because of the detailed understanding of D. melanogaster development and the experimental tools to manipulate its tissues across developmental stages. In previous work, we demonstrated that the fat body of D. melanogaster larvae is important for survival of starvation stress in the young adult, and suggested that programmed cell death of the larval fat cells in the adult is important for allocation of resources for female reproduction. Here, we describe the temporal uptake of larval-derived carbon by the ovaries, and demonstrate the importance of larval fat-cell death in the maturation of the ovary and in fecundity. Larvae and adults were fed stable carbon isotopes to follow the acquisition of larval-derived carbon by the adult ovaries. We determined that over half of the nutrients acquired by the ovaries in 2-day-old adult females are dependent upon the death of the fat cells. Furthermore, when programmed cell death is inhibited in the larval fat cells, ovarian development was depressed and fecundity was reduced.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Drosophila melanogaster/crescimento & desenvolvimento , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Carbono/metabolismo , Drosophila melanogaster/fisiologia , Metabolismo Energético , Feminino , Fertilidade , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ovário/crescimento & desenvolvimento , Ovário/fisiologia , Reprodução
16.
Artigo em Inglês | MEDLINE | ID: mdl-23182926

RESUMO

Tropical fruit flies (Drosophilidae) differ from temperate drosophilids in several ecophysiological traits, such as desiccation tolerance. Moreover, many species show significant differences in desiccation tolerance across geographical populations. Fruit flies from the tropical and subtropical Indian subcontinent show a clinal pattern for desiccation tolerance which is similar for more than a dozen species studied so far, suggesting adaptation to climatic differences. We performed a meta-analysis to investigate which particular climatic patterns modulate desiccation tolerance in natural populations of drosophilids. Latitude of the sampling site explained most of the variability. Seasonal thermal amplitude (fluctuations in temperature expressed as coefficient of variation) was the strongest climatic factor shaping desiccation tolerance of flies, while factors measuring humidity directly were not important. Implications for survival of flies after future climate change are suggested.


Assuntos
Adaptação Fisiológica/genética , Dessecação , Drosophila/fisiologia , Animais , Mudança Climática , Drosophila/genética , Variação Genética , Geografia , Umidade , Índia , Temperatura , Clima Tropical
17.
Ecol Evol ; 11(1): 352-364, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437434

RESUMO

The insect cuticle is the interface between internal homeostasis and the often harsh external environment. Cuticular hydrocarbons (CHCs) are key constituents of this hard cuticle and are associated with a variety of functions including stress response and communication. CHC production and deposition on the insect cuticle vary among natural populations and are affected by developmental temperature; however, little is known about CHC plasticity in response to the environment experienced following eclosion, during which time the insect cuticle undergoes several crucial changes. We targeted this crucial to important phase and studied post-eclosion temperature effects on CHC profiles in two natural populations of Drosophila melanogaster. A forty-eight hour post-eclosion exposure to three different temperatures (18, 25, and 30°C) significantly affected CHCs in both ancestral African and more recently derived North American populations of D. melanogaster. A clear shift from shorter to longer CHCs chain length was observed with increasing temperature, and the effects of post-eclosion temperature varied across populations and between sexes. The quantitative differences in CHCs were associated with variation in desiccation tolerance among populations. Surprisingly, we did not detect any significant differences in water loss rate between African and North American populations. Overall, our results demonstrate strong genetic and plasticity effects in CHC profiles in response to environmental temperatures experienced at the adult stage as well as associations with desiccation tolerance, which is crucial in understanding holometabolan responses to stress.

18.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849820

RESUMO

The regulation of sleep and metabolism are highly interconnected, and dysregulation of sleep is linked to metabolic diseases that include obesity, diabetes, and heart disease. Furthermore, both acute and long-term changes in diet potently impact sleep duration and quality. To identify novel factors that modulate interactions between sleep and metabolic state, we performed a genetic screen for their roles in regulating sleep duration, starvation resistance, and starvation-dependent modulation of sleep. This screen identified a number of genes with potential roles in regulating sleep, metabolism, or both processes. One such gene encodes the auxiliary ion channel UNC79, which was implicated in both the regulation of sleep and starvation resistance. Genetic knockdown or mutation of unc79 results in flies with increased sleep duration, as well as increased starvation resistance. Previous findings have shown that unc79 is required in pacemaker for 24-hours circadian rhythms. Here, we find that unc79 functions in the mushroom body, but not pacemaker neurons, to regulate sleep duration and starvation resistance. Together, these findings reveal spatially localized separable functions of unc79 in the regulation of circadian behavior, sleep, and metabolic function.


Assuntos
Proteínas de Drosophila , Inanição , Animais , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Sono
19.
Pathology ; 53(4): 446-453, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33775406

RESUMO

Diffuse malignant mesothelioma (MM) is an incurable tumour of the serosal membranes, which is often caused by exposure to asbestos and commonly diagnosed at advanced stage. Malignant mesothelioma in situ (MMIS) is now included as diagnostic category by the World Health Organization (WHO). However, our international survey of 34 pulmonary pathologists with an interest in MM diagnosis highlights inconsistency regarding how the diagnosis is being made by experts, despite published guidelines. Whilst the WHO restricts the diagnosis to surgical samples, the very concept has implication for cytological diagnosis, which is already regarded as controversial in itself by some. MMIS is currently only applicable as precursor to MM with an epithelioid component, and raises the possibility for different molecular pathways for different histological MM subtypes. The clinical implications of MMIS at this stage are uncertain, but aggressive therapies are being initiated in some instances. Based on the results of the survey we here present a critical appraisal of the concept, its clinical and conceptual implications and provide practice suggestions for diagnosis. A low threshold for ancillary testing is suggested. The designations of 'malignant mesothelioma, cannot exclude MMIS' or 'atypical mesothelial proliferation with molecular indicators of malignancy, so-called MMIS' could be used on cytology samples, adding 'no evidence of invasion in sample provided' for surgical samples. Clinical and radiological correlation are integral to diagnosis and best done at multidisciplinary meetings. Finally, collaborative studies are required to improve our understanding of MMIS.


Assuntos
Mesotelioma Maligno/diagnóstico , Citodiagnóstico , Diagnóstico Precoce , Humanos , Mesotelioma Maligno/classificação , Mesotelioma Maligno/patologia , Mesotelioma Maligno/terapia , Patologistas , Membrana Serosa/patologia , Inquéritos e Questionários , Organização Mundial da Saúde
20.
Respirology ; 15(8): 1197-202, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20920129

RESUMO

BACKGROUND AND OBJECTIVE: The aim of the present study was to report the features of five patients with concurrent histopathological features of pulmonary alveolar proteinosis (PAP) and hypersensitivity pneumonitis (HP) and their high-resolution CT (HRCT) appearances. METHODS: Patients with histopathological features of both HP and PAP on surgical lung biopsy referred for tertiary review were retrospectively identified. The pathology and HRCT images were semi-quantitatively scored to evaluate the relative contribution to HP and PAP. RESULTS: Five patients had histopathological features of HP and PAP but had varied HRCT appearances. All had imaging features of PAP to a varying degree with two patients also showing characteristics of HP but three patients had ill-defined thickened interlobular septa, not typical of either disease. CONCLUSIONS: We describe the coexistence of PAP and HP in five patients and discuss possible linkages between these two distinct pathologies.


Assuntos
Alveolite Alérgica Extrínseca/patologia , Proteinose Alveolar Pulmonar/patologia , Adulto , Idoso , Alveolite Alérgica Extrínseca/diagnóstico por imagem , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Proteinose Alveolar Pulmonar/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA