Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(4): 790-804.e13, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661759

RESUMO

The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing ß cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just ß cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and ß cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias Humanas/citologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Morfogênese , Pâncreas/citologia
2.
Genes Dev ; 37(11-12): 490-504, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364986

RESUMO

The consolidation of unambiguous cell fate commitment relies on the ability of transcription factors (TFs) to exert tissue-specific regulation of complex genetic networks. However, the mechanisms by which TFs establish such precise control over gene expression have remained elusive-especially in instances in which a single TF operates in two or more discrete cellular systems. In this study, we demonstrate that ß cell-specific functions of NKX2.2 are driven by the highly conserved NK2-specific domain (SD). Mutation of the endogenous NKX2.2 SD prevents the developmental progression of ß cell precursors into mature, insulin-expressing ß cells, resulting in overt neonatal diabetes. Within the adult ß cell, the SD stimulates ß cell performance through the activation and repression of a subset of NKX2.2-regulated transcripts critical for ß cell function. These irregularities in ß cell gene expression may be mediated via SD-contingent interactions with components of chromatin remodelers and the nuclear pore complex. However, in stark contrast to these pancreatic phenotypes, the SD is entirely dispensable for the development of NKX2.2-dependent cell types within the CNS. Together, these results reveal a previously undetermined mechanism through which NKX2.2 directs disparate transcriptional programs in the pancreas versus neuroepithelium.


Assuntos
Proteínas de Homeodomínio , Células Secretoras de Insulina , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína Homeobox Nkx-2.2 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular , Proteínas de Peixe-Zebra/genética
3.
Genome Res ; 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35738900

RESUMO

The successful discovery of novel biological therapeutics by selection requires highly diverse libraries of candidate sequences that contain a high proportion of desirable candidates. Here we propose the use of computationally designed factorizable libraries made of concatenated segment libraries as a method of creating large libraries that meet an objective function at low cost. We show that factorizable libraries can be designed efficiently by representing objective functions that describe sequence optimality as an inner product of feature vectors, which we use to design an optimization method we call stochastically annealed product spaces (SAPS). We then use this approach to design diverse and efficient libraries of antibody CDR-H3 sequences with various optimized characteristics.

4.
Nature ; 567(7746): E1-E2, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30765887

RESUMO

In this Article, a data processing error affected Fig. 3e and Extended Data Table 2; these errors have been corrected online.

5.
Nature ; 563(7733): 646-651, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405244

RESUMO

Following Cas9 cleavage, DNA repair without a donor template is generally considered stochastic, heterogeneous and impractical beyond gene disruption. Here, we show that template-free Cas9 editing is predictable and capable of precise repair to a predicted genotype, enabling correction of disease-associated mutations in humans. We constructed a library of 2,000 Cas9 guide RNAs paired with DNA target sites and trained inDelphi, a machine learning model that predicts genotypes and frequencies of 1- to 60-base-pair deletions and 1-base-pair insertions with high accuracy (r = 0.87) in five human and mouse cell lines. inDelphi predicts that 5-11% of Cas9 guide RNAs targeting the human genome are 'precise-50', yielding a single genotype comprising greater than or equal to 50% of all major editing products. We experimentally confirmed precise-50 insertions and deletions in 195 human disease-relevant alleles, including correction in primary patient-derived fibroblasts of pathogenic alleles to wild-type genotype for Hermansky-Pudlak syndrome and Menkes disease. This study establishes an approach for precise, template-free genome editing.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Edição de Genes/normas , Síndrome de Hermanski-Pudlak/genética , Aprendizado de Máquina , Síndrome dos Cabelos Torcidos/genética , Moldes Genéticos , Alelos , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Reparo do DNA/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HCT116 , Células HEK293 , Síndrome de Hermanski-Pudlak/patologia , Humanos , Células K562 , Síndrome dos Cabelos Torcidos/patologia , Reprodutibilidade dos Testes , Especificidade por Substrato
6.
Nucleic Acids Res ; 50(9): e52, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35100401

RESUMO

Genomic interactions provide important context to our understanding of the state of the genome. One question is whether specific transcription factor interactions give rise to genome organization. We introduce spatzie, an R package and a website that implements statistical tests for significant transcription factor motif cooperativity between enhancer-promoter interactions. We conducted controlled experiments under realistic simulated data from ChIP-seq to confirm spatzie is capable of discovering co-enriched motif interactions even in noisy conditions. We then use spatzie to investigate cell type specific transcription factor cooperativity within recent human ChIA-PET enhancer-promoter interaction data. The method is available online at https://spatzie.mit.edu.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Software , Fatores de Transcrição , Sequenciamento de Cromatina por Imunoprecipitação , Genoma , Genômica , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Genome Res ; 30(10): 1468-1480, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32973041

RESUMO

A key mechanism in cellular regulation is the ability of the transcriptional machinery to physically access DNA. Transcription factors interact with DNA to alter the accessibility of chromatin, which enables changes to gene expression during development or disease or as a response to environmental stimuli. However, the regulation of DNA accessibility via the recruitment of transcription factors is difficult to study in the context of the native genome because every genomic site is distinct in multiple ways. Here we introduce the multiplexed integrated accessibility assay (MIAA), an assay that measures chromatin accessibility of synthetic oligonucleotide sequence libraries integrated into a controlled genomic context with low native accessibility. We apply MIAA to measure the effects of sequence motifs on cell type-specific accessibility between mouse embryonic stem cells and embryonic stem cell-derived definitive endoderm cells, screening 7905 distinct DNA sequences. MIAA recapitulates differential accessibility patterns of 100-nt sequences derived from natively differential genomic regions, identifying E-box motifs common to epithelial-mesenchymal transition driver transcription factors in stem cell-specific accessible regions that become repressed in endoderm. We show that a single binding motif for a key regulatory transcription factor is sufficient to open chromatin, and classify sets of stem cell-specific, endoderm-specific, and shared accessibility-modifying transcription factor motifs. We also show that overexpression of two definitive endoderm transcription factors, T and Foxa2, results in changes to accessibility in DNA sequences containing their respective DNA-binding motifs and identify preferential motif arrangements that influence accessibility.


Assuntos
Cromatina/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Animais , Composição de Bases , DNA/química , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Endoderma/metabolismo , Genômica/métodos , Camundongos , Motivos de Nucleotídeos , Oligonucleotídeos , Análise de Sequência de DNA
8.
Bioinformatics ; 38(9): 2381-2388, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35191481

RESUMO

MOTIVATION: Sequence models based on deep neural networks have achieved state-of-the-art performance on regulatory genomics prediction tasks, such as chromatin accessibility and transcription factor binding. But despite their high accuracy, their contributions to a mechanistic understanding of the biology of regulatory elements is often hindered by the complexity of the predictive model and thus poor interpretability of its decision boundaries. To address this, we introduce seqgra, a deep learning pipeline that incorporates the rule-based simulation of biological sequence data and the training and evaluation of models, whose decision boundaries mirror the rules from the simulation process. RESULTS: We show that seqgra can be used to (i) generate data under the assumption of a hypothesized model of genome regulation, (ii) identify neural network architectures capable of recovering the rules of said model and (iii) analyze a model's predictive performance as a function of training set size and the complexity of the rules behind the simulated data. AVAILABILITY AND IMPLEMENTATION: The source code of the seqgra package is hosted on GitHub (https://github.com/gifford-lab/seqgra). seqgra is a pip-installable Python package. Extensive documentation can be found at https://kkrismer.github.io/seqgra. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Redes Neurais de Computação , Software , Cromatina , Sequências Reguladoras de Ácido Nucleico
9.
Bioinformatics ; 37(19): 3160-3167, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33705522

RESUMO

SUMMARY: T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated and expanded by Major Histocompatibility Complex (MHC)-presented antigens contained in peptide vaccines. We present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their anchor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep residual networks, and then uses the model to propose anchor residue changes to improve peptide affinity. We use a high throughput yeast display assay to show that anchor residue optimization improves peptide binding. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
PLoS Comput Biol ; 17(8): e1009282, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370721

RESUMO

Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpret genome regulatory sequences for cell type-specific or condition specific patterns. We show that these methods identify relevant transcription factor motifs and spacings that are predictive of cell state-specific chromatin accessibility. Finally, we integrate these methods into framework that is readily accessible to non-experts and available for download as a binary or installed via PyPI or bioconda at https://cgs.csail.mit.edu/deepaccess-package/.


Assuntos
Aprendizado Profundo , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Redes Neurais de Computação , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo
11.
PLoS Comput Biol ; 17(1): e1008605, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417623

RESUMO

Restoring gene function by the induced skipping of deleterious exons has been shown to be effective for treating genetic disorders. However, many of the clinically successful therapies for exon skipping are transient oligonucleotide-based treatments that require frequent dosing. CRISPR-Cas9 based genome editing that causes exon skipping is a promising therapeutic modality that may offer permanent alleviation of genetic disease. We show that machine learning can select Cas9 guide RNAs that disrupt splice acceptors and cause the skipping of targeted exons. We experimentally measured the exon skipping frequencies of a diverse genome-integrated library of 791 splice sequences targeted by 1,063 guide RNAs in mouse embryonic stem cells. We found that our method, SkipGuide, is able to identify effective guide RNAs with a precision of 0.68 (50% threshold predicted exon skipping frequency) and 0.93 (70% threshold predicted exon skipping frequency). We anticipate that SkipGuide will be useful for selecting guide RNA candidates for evaluation of CRISPR-Cas9-mediated exon skipping therapy.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Aprendizado de Máquina , RNA Guia de Cinetoplastídeos/genética , Animais , Células Cultivadas , Células-Tronco Embrionárias , Éxons , Biblioteca Gênica , Humanos , Camundongos
12.
PLoS Comput Biol ; 17(3): e1008789, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33711017

RESUMO

We introduce poly-adenine CRISPR gRNA-based single-cell RNA-sequencing (pAC-Seq), a method that enables the direct observation of guide RNAs (gRNAs) in scRNA-seq. We use pAC-Seq to assess the phenotypic consequences of CRISPR/Cas9 based alterations of gene cis-regulatory regions. We show that pAC-Seq is able to detect cis-regulatory-induced alteration of target gene expression even when biallelic loss of target gene expression occurs in only ~5% of cells. This low rate of biallelic loss significantly increases the number of cells required to detect the consequences of changes to the regulatory genome, but can be ameliorated by transcript-targeted sequencing. Based on our experimental results we model the power to detect regulatory genome induced transcriptomic effects based on the rate of mono/biallelic loss, baseline gene expression, and the number of cells per target gRNA.


Assuntos
Sistemas CRISPR-Cas/genética , Elementos Reguladores de Transcrição/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Algoritmos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Biologia Computacional , Bases de Dados Factuais , Humanos , Camundongos , RNA Guia de Cinetoplastídeos/genética
13.
Nucleic Acids Res ; 48(6): e31, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32009147

RESUMO

Chromatin interaction data from protocols such as ChIA-PET, HiChIP and Hi-C provide valuable insights into genome organization and gene regulation, but can include spurious interactions that do not reflect underlying genome biology. We introduce an extension of the Irreproducible Discovery Rate (IDR) method called IDR2D that identifies replicable interactions shared by chromatin interaction experiments. IDR2D provides a principled set of interactions and eliminates artifacts from single experiments. The method is available as a Bioconductor package for the R community, as well as an online service at https://idr2d.mit.edu.


Assuntos
Genoma , Genômica/métodos , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Cromossomos/genética , Reprodutibilidade dos Testes , Software
14.
Bioinformatics ; 36(7): 2126-2133, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778140

RESUMO

MOTIVATION: The precise targeting of antibodies and other protein therapeutics is required for their proper function and the elimination of deleterious off-target effects. Often the molecular structure of a therapeutic target is unknown and randomized methods are used to design antibodies without a model that relates antibody sequence to desired properties. RESULTS: Here, we present Ens-Grad, a machine learning method that can design complementarity determining regions of human Immunoglobulin G antibodies with target affinities that are superior to candidates derived from phage display panning experiments. We also demonstrate that machine learning can improve target specificity by the modular composition of models from different experimental campaigns, enabling a new integrative approach to improving target specificity. Our results suggest a new path for the discovery of therapeutic molecules by demonstrating that predictive and differentiable models of antibody binding can be learned from high-throughput experimental data without the need for target structural data. AVAILABILITY AND IMPLEMENTATION: Sequencing data of the phage panning experiment are deposited at NIH's Sequence Read Archive (SRA) under the accession number SRP158510. We make our code available at https://github.com/gifford-lab/antibody-2019. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Regiões Determinantes de Complementaridade , Aprendizado de Máquina , Anticorpos , Humanos
15.
Nucleic Acids Res ; 47(6): e35, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30953075

RESUMO

Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is a method for the genome-wide de novo discovery of chromatin interactions. Existing computational methods typically fail to detect weak or dynamic interactions because they use a peak-calling step that ignores paired-end linkage information. We have developed a novel computational method called Chromatin Interaction Discovery (CID) to overcome this limitation with an unbiased clustering approach for interaction discovery. CID outperforms existing chromatin interaction detection methods with improved sensitivity, replicate consistency, and concordance with other chromatin interaction datasets. In addition, CID also outperforms other methods in discovering chromatin interactions from HiChIP data. We expect that the CID method will be valuable in characterizing 3D chromatin interactions and in understanding the functional consequences of disease-associated distal genetic variations.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/química , Cromatina/metabolismo , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Conjuntos de Dados como Assunto , Etiquetas de Sequências Expressas , Humanos , Ligação Proteica
16.
Bioinformatics ; 35(14): i278-i283, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510651

RESUMO

MOTIVATION: The computational modeling of peptide display by class I major histocompatibility complexes (MHCs) is essential for peptide-based therapeutics design. Existing computational methods for peptide-display focus on modeling the peptide-MHC-binding affinity. However, such models are not able to characterize the sequence features for the other cellular processes in the peptide display pathway that determines MHC ligand selection. RESULTS: We introduce a semi-supervised model, DeepLigand that outperforms the state-of-the-art models in MHC Class I ligand prediction. DeepLigand combines a peptide language model and peptide binding affinity prediction to score MHC class I peptide presentation. The peptide language model characterizes sequence features that correspond to secondary factors in MHC ligand selection other than binding affinity. The peptide embedding is learned by pre-training on natural ligands, and can discriminate between ligands and non-ligands in the absence of binding affinity prediction. Although conventional affinity-based models fail to classify peptides with moderate affinities, DeepLigand discriminates ligands from non-ligands with consistently high accuracy. AVAILABILITY AND IMPLEMENTATION: We make DeepLigand available at https://github.com/gifford-lab/DeepLigand. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Peptídeos/análise , Antígenos de Histocompatibilidade Classe I , Ligantes , Ligação Proteica , Software
17.
BMC Bioinformatics ; 20(1): 401, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324140

RESUMO

BACKGROUND: Visualization tools for deep learning models typically focus on discovering key input features without considering how such low level features are combined in intermediate layers to make decisions. Moreover, many of these methods examine a network's response to specific input examples that may be insufficient to reveal the complexity of model decision making. RESULTS: We present DeepResolve, an analysis framework for deep convolutional models of genome function that visualizes how input features contribute individually and combinatorially to network decisions. Unlike other methods, DeepResolve does not depend upon the analysis of a predefined set of inputs. Rather, it uses gradient ascent to stochastically explore intermediate feature maps to 1) discover important features, 2) visualize their contribution and interaction patterns, and 3) analyze feature sharing across tasks that suggests shared biological mechanism. We demonstrate the visualization of decision making using our proposed method on deep neural networks trained on both experimental and synthetic data. DeepResolve is competitive with existing visualization tools in discovering key sequence features, and identifies certain negative features and non-additive feature interactions that are not easily observed with existing tools. It also recovers similarities between poorly correlated classes which are not observed by traditional methods. DeepResolve reveals that DeepSEA's learned decision structure is shared across genome annotations including histone marks, DNase hypersensitivity, and transcription factor binding. We identify groups of TFs that suggest known shared biological mechanism, and recover correlation between DNA hypersensitivities and TF/Chromatin marks. CONCLUSIONS: DeepResolve is capable of visualizing complex feature contribution patterns and feature interactions that contribute to decision making in genomic deep convolutional networks. It also recovers feature sharing and class similarities which suggest interesting biological mechanisms. DeepResolve is compatible with existing visualization tools and provides complementary insights.


Assuntos
Algoritmos , Aprendizado Profundo , Genômica , Redes Neurais de Computação , Sequência de Bases , Bases de Dados Genéticas , Código das Histonas , Histonas/metabolismo , Fatores de Transcrição/metabolismo
18.
Genome Res ; 26(10): 1430-1440, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27456004

RESUMO

Enhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Modelos Genéticos , Animais , Cromatina/metabolismo , Genoma Humano , Humanos , Aprendizado de Máquina
19.
Nucleic Acids Res ; 45(11): e99, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28334830

RESUMO

DNA methylation plays a crucial role in the establishment of tissue-specific gene expression and the regulation of key biological processes. However, our present inability to predict the effect of genome sequence variation on DNA methylation precludes a comprehensive assessment of the consequences of non-coding variation. We introduce CpGenie, a sequence-based framework that learns a regulatory code of DNA methylation using a deep convolutional neural network and uses this network to predict the impact of sequence variation on proximal CpG site DNA methylation. CpGenie produces allele-specific DNA methylation prediction with single-nucleotide sensitivity that enables accurate prediction of methylation quantitative trait loci (meQTL). We demonstrate that CpGenie prioritizes validated GWAS SNPs, and contributes to the prediction of functional non-coding variants, including expression quantitative trait loci (eQTL) and disease-associated mutations. CpGenie is publicly available to assist in identifying and interpreting regulatory non-coding variants.


Assuntos
Metilação de DNA , DNA Intergênico/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Modelos Genéticos , Redes Neurais de Computação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
Proc Natl Acad Sci U S A ; 113(19): 5364-9, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27078102

RESUMO

HLA-G, a nonclassical HLA molecule uniquely expressed in the placenta, is a central component of fetus-induced immune tolerance during pregnancy. The tissue-specific expression of HLA-G, however, remains poorly understood. Here, systematic interrogation of the HLA-G locus using massively parallel reporter assay (MPRA) uncovered a previously unidentified cis-regulatory element 12 kb upstream of HLA-G with enhancer activity, Enhancer L Strikingly, clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of this enhancer resulted in ablation of HLA-G expression in JEG3 cells and in primary human trophoblasts isolated from placenta. RNA-seq analysis demonstrated that Enhancer L specifically controls HLA-G expression. Moreover, DNase-seq and chromatin conformation capture (3C) defined Enhancer L as a cell type-specific enhancer that loops into the HLA-G promoter. Interestingly, MPRA-based saturation mutagenesis of Enhancer L identified motifs for transcription factors of the CEBP and GATA families essential for placentation. These factors associate with Enhancer L and regulate HLA-G expression. Our findings identify long-range chromatin looping mediated by core trophoblast transcription factors as the mechanism controlling tissue-specific HLA-G expression at the maternal-fetal interface. More broadly, these results establish the combination of MPRA and CRISPR/Cas9 deletion as a powerful strategy to investigate human immune gene regulation.


Assuntos
Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Antígenos HLA-G/imunologia , Histocompatibilidade Materno-Fetal/imunologia , Troca Materno-Fetal/imunologia , Gravidez/imunologia , Trofoblastos/imunologia , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígenos HLA-G/genética , Histocompatibilidade Materno-Fetal/genética , Humanos , Fenômenos Imunogenéticos/genética , Troca Materno-Fetal/genética , Placenta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA