Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Osteoporos Int ; 35(10): 1681-1692, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38985200

RESUMO

PURPOSE: This scoping review aimed to assess the current research on artificial intelligence (AI)--enhanced opportunistic screening approaches for stratifying osteoporosis and osteopenia risk by evaluating vertebral trabecular bone structure in CT scans. METHODS: PubMed, Scopus, and Web of Science databases were systematically searched for studies published between 2018 and December 2023. Inclusion criteria encompassed articles focusing on AI techniques for classifying osteoporosis/osteopenia or determining bone mineral density using CT scans of vertebral bodies. Data extraction included study characteristics, methodologies, and key findings. RESULTS: Fourteen studies met the inclusion criteria. Three main approaches were identified: fully automated deep learning solutions, hybrid approaches combining deep learning and conventional machine learning, and non-automated solutions using manual segmentation followed by AI analysis. Studies demonstrated high accuracy in bone mineral density prediction (86-96%) and classification of normal versus osteoporotic subjects (AUC 0.927-0.984). However, significant heterogeneity was observed in methodologies, workflows, and ground truth selection. CONCLUSIONS: The review highlights AI's promising potential in enhancing opportunistic screening for osteoporosis using CT scans. While the field is still in its early stages, with most solutions at the proof-of-concept phase, the evidence supports increased efforts to incorporate AI into radiologic workflows. Addressing knowledge gaps, such as standardizing benchmarks and increasing external validation, will be crucial for advancing the clinical application of these AI-enhanced screening methods. Integration of such technologies could lead to improved early detection of osteoporotic conditions at a low economic cost.


Assuntos
Inteligência Artificial , Densidade Óssea , Osteoporose , Tomografia Computadorizada por Raios X , Humanos , Osteoporose/diagnóstico por imagem , Osteoporose/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Densidade Óssea/fisiologia , Programas de Rastreamento/métodos , Aprendizado Profundo , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/fisiopatologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiopatologia , Medição de Risco/métodos , Aprendizado de Máquina
2.
Infection ; 52(3): 1087-1097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38326527

RESUMO

BACKGROUND: Innate lymphoid cells (ILCs) are key organizers of tissue immune responses and regulate tissue development, repair, and pathology. Persistent clinical sequelae beyond 12 weeks following acute COVID-19 disease, named post-COVID syndrome (PCS), are increasingly recognized in convalescent individuals. ILCs have been associated with the severity of COVID-19 symptoms but their role in the development of PCS remains poorly defined. METHODS AND RESULTS: Here, we used multiparametric immune phenotyping, finding expanded circulating ILC precursors (ILCPs) and concurrent decreased group 2 innate lymphoid cells (ILC2s) in PCS patients compared to well-matched convalescent control groups at > 3 months after infection or healthy controls. Patients with PCS showed elevated expression of chemokines and cytokines associated with trafficking of immune cells (CCL19/MIP-3b, FLT3-ligand), endothelial inflammation and repair (CXCL1, EGF, RANTES, IL-1RA, PDGF-AA). CONCLUSION: These results define immunological parameters associated with PCS and might help find biomarkers and disease-relevant therapeutic strategies.


Assuntos
COVID-19 , Convalescença , Citocinas , Linfócitos , Síndrome de COVID-19 Pós-Aguda , Humanos , COVID-19/imunologia , COVID-19/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Linfócitos/imunologia , Citocinas/imunologia , SARS-CoV-2/imunologia , Imunidade Inata , Idoso , Quimiocinas/imunologia
3.
Acta Radiol ; 65(9): 1115-1125, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033391

RESUMO

Spinal bone lesions encompass a wide array of pathologies, spanning from benign abnormalities to aggressive malignancies, such as diffusely localized metastases. Early detection and accurate differentiation of the underlying diseases is crucial for every patient's clinical treatment and outcome, with radiological imaging being a core element in the diagnostic pathway. Across numerous pathologies and imaging techniques, deep learning (DL) models are progressively considered a valuable resource in the clinical setting. This review describes not only the diagnostic performance of these models and the differing approaches in the field of spinal bone malignancy recognition, but also the lack of standardized methodology and reporting that we believe is currently hampering this newly founded area of research. In line with their established and reliable role in lesion detection, this publication focuses on both computed tomography and magnetic resonance imaging, as well as various derivative modalities (i.e. SPECT). After conducting a systematic literature search and subsequent analysis for applicability and quality using a modified QUADAS-2 scoring system, we confirmed that most of the 14 identified studies were plagued by major limitations, such as insufficient reporting of model statistics and data acquisition, a lacking external validation dataset, and potentially biased annotation. Although we experienced these limitations, we nonetheless conclude that the potential of these methods shines through in the presented results. These findings underline the need for more stringent quality controls in DL studies, as well as model development to afford increased insight and progress in this promising novel field.


Assuntos
Aprendizado Profundo , Neoplasias da Coluna Vertebral , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
4.
J Stroke Cerebrovasc Dis ; 33(12): 108014, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293708

RESUMO

(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in vascular anatomy. However, T2-Weighted Magnetic Resonance Imaging (T2WI) is a standard sequence utilized for the majority of outpatient head scans. By employing a sequence such as T2WI, there is a possible shift towards early detection of UIAs through opportunistic screening. Here, we assess a Deep Learning Algorithm (DLA) developed to assist radiologists in identifying and reporting UIAs on T2WI in a routine clinical setting. (2) Methods: A DLA was trained on a set of 110 patients undergoing an MR head scan with the gold standard set by two radiology experts. Eight radiologists were given a cohort of 50 cranial T2WI studies and asked for a routine report. After a 10-day washout period, they reviewed the same cases randomized and supported by the DLA predictions. We assessed changes in sensitivity, specificity, accuracy, and false positives. (3) Results: During routine reporting, the models' assistance improved the sensitivity of the eight participants by an average of 36.19 and the accuracy by 10.00 percentage points. (4) Conclusion: Our results indicate the potential benefit of deep learning to improve radiologists' detection of UIAs during routine reporting. From this, we can infer that the combination of T2WI with our DLA supports opportunistic screening, suggesting potential approaches for future research and application.

5.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623233

RESUMO

A number of seroassays are available for SARS-CoV-2 testing; yet, head-to-head evaluations of different testing principles are limited, especially using raw values rather than categorical data. In addition, identifying correlates of protection is of utmost importance, and comparisons of available testing systems with functional assays, such as direct viral neutralisation, are needed.We analysed 6658 samples consisting of true-positives (n=193), true-negatives (n=1091), and specimens of unknown status (n=5374). For primary testing, we used Euroimmun-Anti-SARS-CoV-2-ELISA-IgA/IgG and Roche-Elecsys-Anti-SARS-CoV-2. Subsequently virus-neutralisation, GeneScriptcPass, VIRAMED-SARS-CoV-2-ViraChip, and Mikrogen-recomLine-SARS-CoV-2-IgG were applied for confirmatory testing. Statistical modelling generated optimised assay cut-off thresholds. Sensitivity of Euroimmun-anti-S1-IgA was 64.8%, specificity 93.3% (manufacturer's cut-off); for Euroimmun-anti-S1-IgG, sensitivity was 77.2/79.8% (manufacturer's/optimised cut-offs), specificity 98.0/97.8%; Roche-anti-N sensitivity was 85.5/88.6%, specificity 99.8/99.7%. In true-positives, mean and median Euroimmun-anti-S1-IgA and -IgG titres decreased 30/90 days after RT-PCR-positivity, Roche-anti-N titres decreased significantly later. Virus-neutralisation was 80.6% sensitive, 100.0% specific (≥1:5 dilution). Neutralisation surrogate tests (GeneScriptcPass, Mikrogen-recomLine-RBD) were >94.9% sensitive and >98.1% specific. Optimised cut-offs improved test performances of several tests. Confirmatory testing with virus-neutralisation might be complemented with GeneScriptcPassTM or recomLine-RBD for certain applications. Head-to-head comparisons given here aim to contribute to the refinement of testing strategies for individual and public health use.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Testes de Neutralização/métodos , SARS-CoV-2/imunologia , Teste de Ácido Nucleico para COVID-19 , Estudos de Coortes , Humanos
7.
Front Immunol ; 12: 688436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093595

RESUMO

Background: Adaptive immune responses to structural proteins of the virion play a crucial role in protection against coronavirus disease 2019 (COVID-19). We therefore studied T cell responses against multiple SARS-CoV-2 structural proteins in a large cohort using a simple, fast, and high-throughput approach. Methods: An automated interferon gamma release assay (IGRA) for the Nucleocapsid (NC)-, Membrane (M)-, Spike-C-terminus (SCT)-, and N-terminus-protein (SNT)-specific T cell responses was performed using fresh whole blood from study subjects with convalescent, confirmed COVID-19 (n = 177, more than 200 days post infection), exposed household members (n = 145), and unexposed controls (n = 85). SARS-CoV-2-specific antibodies were assessed using Elecsys® Anti-SARS-CoV-2 (Ro-N-Ig) and Anti-SARS-CoV-2-ELISA (IgG) (EI-S1-IgG). Results: 156 of 177 (88%) previously PCR confirmed cases were still positive by Ro-N-Ig more than 200 days after infection. In T cells, most frequently the M-protein was targeted by 88% seropositive, PCR confirmed cases, followed by SCT (85%), NC (82%), and SNT (73%), whereas each of these antigens was recognized by less than 14% of non-exposed control subjects. Broad targeting of these structural virion proteins was characteristic of convalescent SARS-CoV-2 infection; 68% of all seropositive individuals targeted all four tested antigens. Indeed, anti-NC antibody titer correlated loosely, but significantly with the magnitude and breadth of the SARS-CoV-2-specific T cell response. Age, sex, and body mass index were comparable between the different groups. Conclusion: SARS-CoV-2 seropositivity correlates with broad T cell reactivity of the structural virus proteins at 200 days after infection and beyond. The SARS-CoV-2-IGRA can facilitate large scale determination of SARS-CoV-2-specific T cell responses with high accuracy against multiple targets.


Assuntos
COVID-19/imunologia , Interferon gama/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Proteínas Estruturais Virais/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , COVID-19/sangue , Feminino , Humanos , Testes de Liberação de Interferon-gama , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA