Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 955, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230582

RESUMO

Over time, researchers have accumulated significant evidence indicating that vitamin D deficiency not only impacts skeletal health but also contributes to the development and progression of various diseases, including cancer, diabetes, and cardiovascular conditions. The risk of low serum 1, 25(OH)2D3 level ultimately directs the way to morbidity, the beginning of new diseases, and numerous infections. Infections are the first entity that affects those with vitamin D deficiency. The common infection is urinary tract infection (UTI), and its relationship with vitamin D deficiency or insufficiency remains controversial. This infection affects both men and women, but comparatively, women are more prone to this infection because of the short length of the urethra, which makes an easy entry for the bacteria. The low level of serum vitamin D increases the risk of UTIs in children. Recurrent UTIs are one of the major weaknesses in women; if left untreated, they progress to appallingly serious conditions like kidney dysfunction, liver damage, etc. Hence improving the vitamin D status may help to improve the immune system, thus making it more resistant to infections. In this review, we have focused on examining whether vitamin D deficiency and insufficiency are the causes of UTIs and the association between them in women and children. We have also described the connection between vitamin D deficiency and insufficiency with UTIs and additional nanotechnology- based treatment strategies.


Assuntos
Infecções Urinárias , Deficiência de Vitamina D , Vitamina D , Humanos , Infecções Urinárias/sangue , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações , Criança , Feminino , Masculino , Adulto
2.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731568

RESUMO

Cancer is one of the major causes of death, and its negative impact continues to rise globally. Chemotherapy, which is the most common therapy, has several limitations due to its tremendous side effects. Therefore, developing an alternate therapeutic agent with high biocompatibility is indeed needed. The anti-oxidative effects and bioactivities of several different crude extracts of marine algae have been evaluated both in vitro and in vivo. In the present study, we synthesized the aqueous extract (HA) from the marine algae Amphiroa anceps, and then, a liposome was formulated for that extract (NHA). The extracts were characterized using different photophysical tools like dynamic light scattering, UV-visible spectroscopy, FTIR, scanning electron microscopy, and GC-MS analysis. The SEM image revealed a size range of 112-185 nm for NHA and the GC-MS results showed the presence of octadecanoic acid and n-Hexadecanoic acid in the majority. The anticancer activity was studied using A549 cells, and the NHA inhibited the cancer cells dose-dependently, with the highest killing of 92% at 100 µg/mL. The in vivo studies in the zebrafish model showed that neither the HA nor NHA of Amphiroa anceps showed any teratogenic effect. The outcome of our study showed that NHA can be a potential drug candidate for inhibiting cancer with good biocompatibility up to a dose of 100 µg/mL.


Assuntos
Antineoplásicos , Rodófitas , Peixe-Zebra , Rodófitas/química , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Células A549 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lipossomos/química , Cromatografia Gasosa-Espectrometria de Massas , Nanopartículas/química , Linhagem Celular Tumoral
3.
Int J Neurosci ; : 1-12, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35694981

RESUMO

BACKGROUND: Alzheimer's disease (AD) is diagnosed with the deposition of insoluble ß-amyloid (Aß) peptides in the neuropil of the brain leading to dementia. The extracellular deposition of the fibrillar Aß peptide on the neurons is known as senile plaques. Therefore, Aß degradation and clearance from the human body is a promising therapeutic approach in the medication of AD. METHODS: In the current study, the enzyme lumbrokinase (LK) was extracted and purified from earthworm and its activity was utilized toward Aß 1-42 amyloids degradation in vitro alongside with an additional enzyme serratiopeptidase (SP) considering nattokinase (NK) as a standard. RESULTS: The output of this study revealed that preformed Aß 1-42 amyloids was disintegrated by both LK and SP, as demonstrated from fluorescence assay using Thioflavin T dye. In addition, dynamic light scattering study revealed the lower size of the preformed fibrils Aß 1-42 at various time intervals after incubation with the enzymes LK and SP. Furthermore, in silico approach showed high affinity thermodynamically favorable interaction of LK as well as SP toward Aß 1-42 amyloid. Finally, the toxicity of degraded preformed Aß 1-42 amyloid was assessed by MTT assay which showed reduced toxicity of enzyme treated Aß 1-42 amyloid compared to only Aß 1-42 amyloid. CONCLUSION: The findings of the present study indicated that LK and SP, not only had Aß 1-42 amyloid degrading potential, but also could reduce the toxicity which can make them a suitable drug candidate for AD. Furthermore, the in vivo studies are needed to be executed in future.

4.
Nanotechnology ; 33(8)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34753112

RESUMO

The multifunctional upconversion nanoparticles (UCNPs) are fascinating tool for biological applications. In the present work, photon upconverting NaGdF4:Yb,Er and Ag nanoparticles decorated NaGdF4:Yb,Er (NaGdF4:Yb,Er@Ag) nanoparticles were prepared using a simple polyol process. Rietveld refinement was performed for detailed crystal structural and phase fraction analysis. The morphology of the NaGdF4:Yb,Er@Ag was examined using high-resolution transmission electron microscope, which reveals silver nanoparticles of 8 nm in size were decorated over spherical shaped NaGdF4:Yb,Er nanoparticles with a mean particle size of 90 nm. The chemical compositions were confirmed by EDAX and inductively coupled plasma-optical emission spectrometry analyses. The upconversion luminescence (UCL) of NaGdF4:Yb,Er at 980 nm excitation showed an intense red emission. After incorporating the silver nanoparticles, the UCL intensity decreased due to weak scattering and surface plasmon resonance effect. The VSM magnetic measurement indicates both the UCNPs possess paramagnetic behaviour. The NaGdF4:Yb,Er@Ag showed computed tomography imaging. Magnetic resonance imaging study exhibited better T1 weighted relaxivity in the NaGdF4:Yb,Er than the commercial Gd-DOTA. For the first time, the optical trapping was successfully demonstrated for the upconversion NaGdF4:Yb,Er nanoparticle at near-infrared 980 nm light using an optical tweezer setup. The optically trapped UCNP possessing paramagnetic property exhibited a good optical trapping stiffness. The UCL of trapped single UCNP is recorded to explore the effect of the silver nanoparticles. The multifunctional properties for the NaGdF4:Yb,Er@Ag nanoparticle are demonstrated.

5.
Mikrochim Acta ; 187(6): 317, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385722

RESUMO

The effect of novel silver nanowire encapsulated NaGdF4:Yb,Er hybrid nanocomposite on the upconversion emission and bioimaging properties has been investigated. The upconvension nanomaterials were synthesised by polyol method in the presence of ethylene glycol, PVP and ethylenediamine. The NaGdF4:Yb,Er-Ag hybrid was formed with upconverting NaGdF4:Yb,Er nanoparticles of size ~ 80 nm and silver nanowires of thickness ~ 30 nm. The surface plasmon induced by the silver ion in the NaGdF4:Yb,Er-Ag nanocomposite resulted an intense upconversion green emission at 520 nm and red emission at 660 nm by NIR diode laser excitation at 980 nm wavelength. The UV-Vis-NIR spectral absorption at 440 nm and 980 nm, the intense Raman vibrational modes and the strong upconversion emission results altogether confirm the localised surface plasmon resonance effect of silver ion in the hybrid nanocomposite. MRI study of both NaGdF4:Yb,Er nanoparticle and NaGdF4:Yb,Er-Ag nanocomposite revealed the T1 relaxivities of 22.13 and 10.39 mM-1 s-1, which are larger than the commercial Gd-DOTA contrast agent of 3.08 mM-1 s-1. CT imaging NaGdF4:Yb,Er-Ag and NaGdF4:Yb,Er respectively showed the values of 53.29 HU L/g and 39.51 HU L/g, which are higher than 25.78 HU L/g of the CT contrast agent Iobitridol. The NaGdF4:Yb,Er and NaGdF4:Yb,Er-Ag respectively demonstrated a negative zeta potential of 54 mV and 55 mV, that could be useful for biological application. The in vitro cytotoxicity of the NaGdF4:Yb,Er tested in HeLa and MCF-7 cancer cell line by MTT assay demonstrated a cell viability of 90 and 80 %, respectively. But, the cell viability of NaGdF4:Yb,Er-Ag slightly decreased to 80 and 78%. The confocal microscopy imaging showed that the UCNPs are effectively up-taken inside the nucleolus of the cancer cells, and it might be useful for NIR laser-assisted phototherapy for cancer treatment. Graphical abstract.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Fluoretos/química , Gadolínio/química , Nanocompostos/química , Nanofios/química , Linhagem Celular Tumoral , Meios de Contraste/efeitos da radiação , Érbio/química , Érbio/efeitos da radiação , Corantes Fluorescentes/efeitos da radiação , Fluoretos/efeitos da radiação , Gadolínio/efeitos da radiação , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Microscopia Confocal , Microscopia de Fluorescência , Nanocompostos/efeitos da radiação , Nanofios/efeitos da radiação , Prata/química , Prata/efeitos da radiação , Tomografia Computadorizada por Raios X , Itérbio/química , Itérbio/efeitos da radiação
6.
Ann Med ; 56(1): 2352022, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753584

RESUMO

Uric acid (UA) levels in blood serum have been associated with hypertension, indicating a potential causal relationship between high serum UA levels and the progression of hypertension. Therefore, the reduction of serum UA level is considered a potential strategy for lowering and mitigating blood pressure. If an individual is at risk of developing or already manifesting elevated blood pressure, this intervention could be an integral part of a comprehensive treatment plan. By addressing hyperuricaemia, practitioners may subsidize the optimization of blood pressure regulation, which illustrates the importance of addressing UA levels as a valuable strategy within the broader context of hypertension management. In this analysis, we outlined the operational principles of effective xanthine oxidase inhibitors for the treatment of hyperuricaemia and hypertension, along with an exploration of the contribution of nanotechnology to this field.


Assuntos
Hipertensão , Hiperuricemia , Ácido Úrico , Xantina Oxidase , Humanos , Hiperuricemia/tratamento farmacológico , Hipertensão/tratamento farmacológico , Ácido Úrico/sangue , Xantina Oxidase/antagonistas & inibidores , Pressão Sanguínea/efeitos dos fármacos , Nanotecnologia/métodos , Anti-Hipertensivos/uso terapêutico
7.
J Biomater Sci Polym Ed ; 35(3): 415-441, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113194

RESUMO

Leukemia is a cancer of blood cells that mainly affects the white blood cells. In acute myeloid leukemia (AML) sudden growth of cancerous cells occurs in blood and bone marrow, and it disrupts normal blood cell production. Most patients are asymptomatic, but it spreads rapidly and can become fatal if left untreated. AML is the prevalent form of leukemia in children. Risk factors of AML include chemical exposure, radiation, genetics, etc. Conventional diagnostic methods of AML are complete blood count tests and bone marrow aspiration, while conventional treatment methods involve chemotherapy, radiation therapy, and bone marrow transplant. There is a risk of cancer cells spreading progressively to the other organs if left untreated, and hence, early diagnosis is required. The conventional diagnostic methods are time- consuming and have drawbacks like harmful side effects and recurrence of the disease. To overcome these difficulties, nanoparticles are employed in treating and diagnosing AML. These nanoparticles can be surface- modified and can be used against cancer cells. Due to their enhanced permeability effect and high surface-to-volume ratio they will be able to reach the tumour site which cannot be reached by traditional drugs. This review article talks about how nanotechnology is more advantageous over the traditional methods in the treatment and diagnosis of AML.


Assuntos
Leucemia Mieloide Aguda , Nanomedicina , Criança , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Medula Óssea
8.
Artif Cells Nanomed Biotechnol ; 52(1): 59-68, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38214666

RESUMO

The present study describes a method for the preparation of green titanium dioxide (TiO2) nanoparticles from the peel of Solanum tuberosum, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO2 (G- TiO2) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO2 nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO2, the cell viability in normal as well as cancer cells was assessed. Further, the in vivo toxicity of the G- TiO2 nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.


Assuntos
Nanopartículas , Solanum tuberosum , Animais , Peixe-Zebra , Nanopartículas/química , Titânio/farmacologia , Titânio/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Catálise
9.
J Biomater Sci Polym Ed ; 35(2): 269-294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962432

RESUMO

Various nanomaterials have been studied for their biomedical application in recent years. Among them, nanocomposites have a prominent medical application in the prevention, diagnosis, and treatment of various diseases. Nanocomposites are made up of polymeric matrix layers composed of synthetic or natural polymers like chitosan, polyethylene glycol, etc. Polymer nanocomposites are inorganic nanoparticles dispersed in a polymer matrix. There are two types of polymeric nanocomposites which include natural and synthetic polymer nanocomposites. These nanocomposites have various biomedical applications, such as medical implants, wound healing, wound dressing, bone repair and replacement, and dental filling. Polymeric nanocomposites have a wide range of biomedical applications due to their high stability, non-immunogenic nature, sustained drug delivery, non-toxic, and can escape reticuloendothelial system uptake along with drug bioavailability improvement. In this review, we have discussed various types of natural and synthetic polymer nanocomposites and their biomedical applications.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Polímeros , Próteses e Implantes
10.
Genet Test Mol Biomarkers ; 28(3): 83-90, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478803

RESUMO

Aim: The matrix metalloproteinases (MMPs) inhibit tissue inhibitors of metalloproteinases (TIMPs), playing a notable role in various biological processes, and mutations in TIMP2 genes impact a variety of urinary cancers. In this study, we analyze and evaluate the potential involvement of the TIMP2 418 G/C and MMP gene polymorphism in the etiology of urinary cancer. Methodology: For suitable case-control studies, a literature search was undertaken from various database sources such as PubMed, EMBASE, and Google Scholar. Incorporated into the analysis were case-control or cohort studies that documented the correlation between TIMP2 418 G/C and urological cancers. MetaGenyo served as the tool for conducting the meta-analysis, employing a fixed-effects model. The collective odds ratios, along with their corresponding 95% confidence intervals, were calculated and presented to assess the robustness of the observed associations. Results: A total of seven studies involving controls and cases out of recorded 1265 controls and 1154 cases were analyzed to ascertain the significant association of the TIMP2 gene with urologic cancer. No statistically significant correlation was observed between allelic, recessive, dominant, and overdominant models for the genetic variant under investigation. A 95% confidence interval (CI) and odds ratio (OR) were computed for each model, considering p-values <0.05. The OR and 95% CI for the allelic model were 0.99 and 0.77-1.27, respectively, whereas the respective values were 1.00 and 0.76-1.32 for the recessive model. In the dominant contrast model, OR and 95% CI were 1.09 and 0.62-1.90, while the same were 0.93 and 0.77-1.12 for the overdominant model. A funnel plot was used to reanalyze and detect the results as statically satisfactory. Conclusions: As a result of the data obtained, the TIMP2 gene polymorphism does not correlate statistically with cancer risk. The significance of this finding can only be confirmed using a large population, extensive epidemiological research, a comprehensive survey, and a better understanding of the molecular pathways associated.


Assuntos
Polimorfismo de Nucleotídeo Único , Inibidor Tecidual de Metaloproteinase-2 , Neoplasias Urológicas , Humanos , Alelos , Estudos de Casos e Controles , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Neoplasias Urológicas/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-39073418

RESUMO

Despite the wide range of treatment options available for cancer therapy, including chemotherapy, radiation therapy, and surgical procedures, each of these treatments has a different side-effect profile and leaves the patient with no option but to choose. Due to their insensitivity and nonspecificity, conventional treatments damage normal cells together with cancer cells. In recent years, a significant amount of attention has been focused on photodynamic therapy (PDT) as a treatment for cancer and drug-resistant microbes. An activated photosensitizer is used as a part of the procedure along with oxygen molecules and a specific wavelength of light belonging to the visible or NIR spectral zone. A light-sensitive laser dye, rhodamine 6G (R6G), was used in the present study as a photosensitizer, taking a challenge to improve the aqueous solubility and ROS quantum yield using optimum concentration (160 mg/ml) of chitosan-alginate (Cs-Alg) blended polymeric nanoformulations. As evidenced by steady-state spectrophotometric and fluorometric measurements, ROS quantum yield increases three-fold over aqueous solution along with solubility gaining that was validated by PDT experiment using human epithelial carcinoma (KB) cell line. Phantom optical imaging was taken using the IVIS imaging system to establish the formulations as a fluorescence-based optical contrast agent, and zebrafish embryos were used to establish their safe in vivo use. The release profile of R6G was fitted using kinetic models, which followed the Non-Fickian kinetic profile. In conclusion, we recommend the formulations as a potential theranostic agent that will aid in PDT-based therapy in conjunction with optical imaging-based diagnosis.

12.
Curr Pharm Des ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108122

RESUMO

INTRODUCTION: As cancer therapy progresses, challenges remain due to the inherent drawbacks of conventional treatments such as chemotherapy, gene therapy, radiation therapy, and surgical removal. Moreover, due to their associated side effects, conventional treatments affect both cancerous and normal cells, making photodynamic therapy (PDT) an attractive alternative. METHODS: As a result of its minimal toxicity, exceptional specificity, and non-invasive characteristics, PDT represents an innovative and highly promising cancer treatment strategy using photosensitizers (PSs) and precise wavelength excitation light to introduce reactive oxygen species (ROS) in the vicinity of cancer cells. RESULTS: Poor aqueous solubility and decreased sensitivity of Rhodamine 6G (R6G) prevent its use as a photosensitizer in PDT, necessitating the development of oxidized sodium alginate (OSA) hydrogelated nanocarriers to enhance its bioavailability, targeted distribution, and ROS-quantum yield. The ROS quantum yield increased from 0.30 in an aqueous environment to 0.51 when using alginate-based formulations, and it was further enhanced to 0.81 in the case of OSA. CONCLUSION: Furthermore, the nanoformulations produced fluorescent signals suitable for use as cellular imaging agents, demonstrating contrast-enhancing capabilities in medical imaging and showing minimal toxicity.

13.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543152

RESUMO

Bupropion (Bup) belongs to the norepinephrine-dopamine reuptake inhibitor (NDRI) class and it is the only FDA-approved drug of its class for the treatment of major depressive disorder (MDD), sold under the name of Wellbutrin. Although bupropion is effective in suppressing the symptoms, its regular use and overdose might lead to seizures and liver failure. Thus, we aimed to nanoformulate bupropion onto a niosomal vesicle to improve its efficacy and achieve the same therapeutic effect at lower scheduled doses. A thin film hydration method was adopted to synthesize and optimize Bup entrapped niosomes using three different surfactants of the sorbitan ester series (Span 20, 40, and 60) in combination with cholesterol. The optimization data determined that the niosome formulated with a cholesterol-to-surfactant ratio of 1:1.5 is the most stable system, with the Bup entrapped niosomes containing Span 20 (Bup@N20C) exhibiting minimal in vitro and in vivo toxicity, and demonstrating the sustained release of Bup in artificial cerebrospinal fluid (ACSF). The Bup@N20C formulation showed increased exploration activity and reduced irregular movements in reserpine-induced depression in the adult zebrafish model, suggesting the potential for mood improvement through the suppression of depression-like behavior which was established by statistical analysis and trajectory data. The Bup@N20C-treated group even surpasses the treatment effect of the positive control group and is comparable to the control group. Hence, it can be inferred that niosomal formulations of Bup represent a promising delivery system capable of achieving the brain delivery of the cargo by bypassing the blood-brain barrier facilitated by their small architectural structure.

14.
Int J Biol Macromol ; 279(Pt 1): 134814, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168227

RESUMO

Amyloids, with their ß-sheet-rich structure, contribute to diabetes, neurodegenerative diseases, and amyloidosis by aggregating within diverse anatomical compartments. Insulin amyloid (IA), sharing structural resemblances with amyloids linked to neurological disorders, acts as a prototype, while compounds capable of degrading these fibrils hold promise as therapeutic agents for amyloidosis intervention. In this research, liposomal nanoformulated iota carrageenan (nCG) was formulated to disrupt insulin amyloids, demonstrating about a 17-20 % higher degradation efficacy compared to conventional carrageenan through thioflavin T fluorescence, dynamic light scattering analysis, and turbidity quantification. The biocompatibility of the nCG and nCG-treated insulin amyloids was evaluated through MTT assay, live-dead cell assay on V79 cells, and hemolysis testing on human blood samples to establish their safety for use in vitro. Zebrafish embryos were utilized to assess in vivo biocompatibility, while adult zebrafish were employed to monitor the degradation capacity of IA post subcutaneous injection, with fluorescence emitted by the fish captured via IVIS. This demonstrated that the formulated nCG exhibited superior anti-amyloid efficacy compared to carrageenan alone, while both materials demonstrated biocompatibility. Furthermore, through docking simulations, an exploration was conducted into the molecular mechanisms governing the inhibition of the target protein pancreatic insulin by carrageenan.

15.
ADMET DMPK ; 12(1): 177-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560712

RESUMO

Background and purpose: Many sectors use nanoparticles and dispose of them in the aquatic environment without deciding the fate of these particles. Experimental approach: To identify a benign species of nanoparticles which can cause minimum harm to the aquatic environment, a comparative study was done with chemically synthesized silver nanoparticles (AgNPs) and green tea mediated synthesis (GT/AgNP) in both in vitro using human alveolar cancer cell line (A549) and normal cell line (L132), and in in vivo with zebrafish embryos. Key results: The in vitro studies revealed that GT/AgNPs were less toxic to normal cells than cancer cells. The GT/AgNPs showed high biocompatibility for zebrafish embryos monitored microscopically for their developmental stages and by cumulative hatchability studies. The reduced hatchability found in the AgNPs-treated group was correlated by differential gene expression of zebrafish hatching enzymes (ZHE) (ZHE1 and ZHE2). Conclusion: The results indicated that nanoparticles can affect the hatching of zebrafish embryos and elicit toxicity at the gene level.

16.
ACS Biomater Sci Eng ; 10(2): 1112-1127, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38163852

RESUMO

Measurement of pH in living cells is a great and decisive factor for providing an early and accurate diagnosis factor. Along with this, the multimodal transverse and longitudinal relaxivity enhancement potentiality over single modality within a single platform in the magnetic resonance imaging (MRI) field is a very challenging issue for diagnostic purposes in the biomedical field of application. Therefore, this work aims to design a versatile platform by fabricating a novel nanoprobe through holmium- and manganese-ion doping in carbon quantum dots (Ho-Mn-CQDs), which can show nearly neutral intracellular pH sensing and MRI imaging at the same time. These manufactured Ho-Mn-CQDs acted as excellent pH sensors in the near-neutral range (4.01-8.01) with the linearity between 6.01 and 8.01, which could be useful for the intracellular pH-sensing capability. An innumerable number of carboxyl and amino groups are present on the surface of the prepared nanoprobe, making it an excellent candidate for pH sensing through fluorescence intensity quenching phenomena. Cellular uptake and cell viability experiments were also executed to affirm the intracellular accepting ability of Ho-Mn-CQDs. Furthermore, with this pH-sensing quality, these Ho-Mn-CQDs are also capable of acting as T1-T2 dual modal imaging contrast agents in comparison with pristine Ho-doped and Mn-doped CQDs. The Ho-Mn-CQDs showed an increment of r1 and r2 relaxivity values simultaneously compared with only the negative contrast agent, holmium in holmium-doped CQDs, and the positive contrast agent, manganese in manganese-doped CQDs. The above-mentioned observations elucidate that its tiny size, excitation dependence of fluorescence behavior, low cytotoxicity, and dual modal contrast imaging capability make it an ideal candidate for pH monitoring in the near-neutral range and also as a dual modal MRI imaging contrast enhancement nanoprobe at the same time.


Assuntos
Meios de Contraste , Manganês , Carbono , Hólmio , Concentração de Íons de Hidrogênio
17.
J Mol Histol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158796

RESUMO

We analyzed the toxic effect of the ethanolic extract of Passiflora incarnata (EEP) and its nanoformulation (N-EEP) in the in vitro and in vivo models (zebrafish embryos and Swiss albino mice). The EEP composition was verified by phytochemical and GC-MS analysis. The synthesized N-EEP was characterized using UV-visible spectroscopy and scanning electron microscopy. In vitro results showed both EEP and N-EEP have a dose-dependent effect in L132 cells (normal embryonic lung cells). In zebrafish embryos, no developmental changes were observed for both EEP and N-EEP at 200 µg/ml. The acute and sub-acute toxicity of EEP and N-EEP was identified by oral administration in Swiss albino mice. A single-day oral dose of EEP and N-EEP at different concentrations was administered for acute toxicity, and changes in body weight, food, water intake, temperature, respiration rate, skin color changes, and eye color till 72 h was observed. In a sub-acute toxicity study, 28 days oral administration of different concentrations of EEP and N-EEP was done. Hematological analysis, serum hepatic biochemical parameter analysis, and histopathological analysis for the liver, kidney, spleen, intestine, and heart were performed. The results indicated that lower than 600 mg/kg of EEP and N-EEP can safely be used for the remediation of a spectrum of diseases.

18.
Genes (Basel) ; 14(7)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37510275

RESUMO

Lung cancer is managed using conventional therapies, including chemotherapy, radiation therapy, or a combination of both. Each of these therapies has its own limitations, such as the indiscriminate killing of normal as well as cancer cells, the solubility of the chemotherapeutic drugs, rapid clearance of the drugs from circulation before reaching the tumor site, the resistance of cancer cells to radiation, and over-sensitization of normal cells to radiation. Other treatment modalities include gene therapy, immunological checkpoint inhibitors, drug repurposing, and in situ cryo-immune engineering (ICIE) strategy. Nanotechnology has come to the rescue to overcome many shortfalls of conventional therapies. Some of the nano-formulated chemotherapeutic drugs, as well as nanoparticles and nanostructures with surface modifications, have been used for effective cancer cell killing and radio sensitization, respectively. Nano-enabled drug delivery systems act as cargo to deliver the sensitizer molecules specifically to the tumor cells, thereby enabling the radiation therapy to be more effective. In this review, we have discussed the different conventional chemotherapies and radiation therapies used for inhibiting lung cancer. We have also discussed the improvement in chemotherapy and radiation sensitization using nanoparticles.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Nanoestruturas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Nanotecnologia
19.
Recent Adv Food Nutr Agric ; 14(2): 72-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37563817

RESUMO

Food toxins can be of natural origin, chemicals, or inadvertent additives that get incorporated during food packaging and processing. When food is contaminated with bacteria or viruses, or other contaminants, serious foodborne diseases arise, causing severe health issues. To overcome these issues, proper food processing and packaging needs to be addressed to protect humans and animals from foodborne diseases. There are many smart food packaging materials that have evolved recently. Researchers enabled the use of nanomaterials in food packaging and have improved the efficacy of food packaging. In this mini-review, the objectives are to summarize the different types of food contaminants, conventional food packaging materials, and recent developments in nanotechnology-based food packaging materials.

20.
ADMET DMPK ; 11(4): 499-511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937247

RESUMO

Background and purpose: The reciprocal translocation of the ABL gene from chromosome 9 to chromosome 22 near the BCR gene gives rise to chronic myelogenous leukemia (CML). The translocation results in forming the Philadelphia chromosome (BCR-ABL) tyrosine kinase. CML results in an increase in the number of white blood cells and alteration in tyrosine kinase expression. CML prognosis includes three stages, namely chronic, accelerated, and blast. The diagnosis method involves a CT scan, biopsy, and complete blood count. However, due to certain disadvantages, early diagnosis of CML is not possible by traditional methods. Nanotechnology offers many advantages in diagnosing and treating cancer. Experimental approach: We searched PubMed, Scopus and Google Scholar using the keywords Philadelphia chromosome, bionanotechnology, tyrosine kinase pathway, half-life, passive targeting, and organic and inorganic nanoparticles. The relevant papers and the classical papers in this field were selected to write about in this review. Key results: The sensitivity and specificity of an assay can be improved by nanoparticles. Utilizing this property, peptides, antibodies, aptamers, etc., in the form of nanoparticles, can be used to detect cancer at a much earlier stage. The half-life of the drug is also increased by nanoformulation. The nanoparticle-coated drugs can easily escape from the immune system. Conclusion: Depending on their type, nanoparticles can be categorized into organic, inorganic and hybrid. Each type has its advantages. Organic nanoparticles have good biocompatibility, inorganic nanoparticles increase the half-life of the drugs. In this review, we highlight the nanoparticles involved in treating CML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA