Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37879625

RESUMO

The origin and eventual loss of biogeographic barriers can create alternating periods of allopatry and secondary contact, facilitating gene flow among distinct metapopulations and generating reticulate evolutionary histories that are not adequately described by a bifurcating evolutionary tree. One such example may exist in the two-lined salamander (Eurycea bislineata) species complex, where discordance among morphological and molecular datasets has created a "vexing taxonomic challenge". Previous phylogeographic analyses of mitochondrial DNA (mtDNA) suggested that the reorganization of Miocene paleodrainages drove vicariance and dispersal, but the inherent limitations of a single-locus dataset precluded the evaluation of subsequent gene flow. Here, we generate triple-enzyme restriction site-associated DNA sequencing (3RAD) data for >100 individuals representing all major mtDNA lineages and use a suite of complementary methods to demonstrate that discordance among earlier datasets is best explained by a reticulate evolutionary history influenced by river drainage reorganization. Systematics of such groups should acknowledge these complex histories and relationships that are not strictly hierarchical.

2.
Mol Ecol ; 32(12): 3133-3149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912202

RESUMO

The blacklegged tick (Ixodes scapularis (Journal of the Academy of Natural Sciences of Philadelphia, 1821, 2, 59)) is a vector of Borrelia burgdorferi sensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984, 34, 496), the causative bacterial agent of Lyme disease, part of a slow-moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well-known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome-wide markers in I. scapularis, conducted by using 3RAD (triple-enzyme restriction-site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters of I. scapularis. In regions where Lyme disease is increasing in frequency, the I. scapularis populations genetically group with ticks from historically highly Lyme-endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome-scale scaffolds for I. scapularis and are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity of I. scapularis and where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted by I. scapularis.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ixodes/genética , Ixodes/microbiologia , Filogeografia , Doença de Lyme/genética , Doença de Lyme/microbiologia , Borrelia burgdorferi/genética , Bactérias
3.
Mol Phylogenet Evol ; 182: 107733, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801373

RESUMO

The processes leading to divergence and speciation can differ broadly among taxa with different life histories. We examine these processes in a small clade of ducks with historically uncertain relationships and species limits. The green-winged teal (Anas crecca) complex is a Holarctic species of dabbling duck currently categorized as three subspecies (Anas crecca crecca, A. c. nimia, and A. c. carolinensis) with a close relative, the yellow-billed teal (Anas flavirostris) from South America. A. c. crecca and A. c. carolinensis are seasonal migrants, while the other taxa are sedentary. We examined divergence and speciation patterns in this group, determining their phylogenetic relationships and the presence and levels of gene flow among lineages using both mitochondrial and genome-wide nuclear DNA obtained from 1,393 ultraconserved element (UCE) loci. Phylogenetic relationships using nuclear DNA among these taxa showed A. c. crecca, A. c. nimia, and A. c. carolinensis clustering together to form one polytomous clade, with A. flavirostris sister to this clade. This relationship can be summarized as (crecca, nimia, carolinensis)(flavirostris). However, whole mitogenomes revealed a different phylogeny: (crecca, nimia)(carolinensis, flavirostris). The best demographic model for key pairwise comparisons supported divergence with gene flow as the probable speciation mechanism in all three contrasts (crecca-nimia, crecca-carolinensis, and carolinensis-flavirostris). Given prior work, gene flow was expected among the Holarctic taxa, but gene flow between North American carolinensis and South American flavirostris (M âˆ¼0.1-0.4 individuals/generation), albeit low, was not expected. Three geographically oriented modes of divergence are likely involved in the diversification of this complex: heteropatric (crecca-nimia), parapatric (crecca-carolinensis), and (mostly) allopatric (carolinensis-flavirostris). Our study shows that ultraconserved elements are a powerful tool for simultaneously studying systematics and population genomics in systems with historically uncertain relationships and species limits.


Assuntos
Patos , Fluxo Gênico , Humanos , Animais , Patos/genética , Filogenia , Metagenômica , DNA Mitocondrial/genética
4.
Theor Appl Genet ; 136(5): 109, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039870

RESUMO

KEY MESSAGE: Sucrose in soybean seeds is desirable for many end-uses. Increased sucrose contents were discovered to associate with a chromosome 16 deletion resulting from fast neutron irradiation. Soybean is one of the most economically important crops in the United States. A primary end-use of soybean is for livestock feed. Therefore, genetic improvement of seed composition is one of the most important goals in soybean breeding programs. Sucrose is desired in animal feed due to its role as an easily digestible energy source. An elite soybean line was irradiated with fast neutrons and the seed from plants were screened for altered seed composition with near-infrared spectroscopy (NIR). One mutant line, G15FN-54, was found to have higher sucrose content (8-9%) than the parental line (5-6%). Comparative genomic hybridization (CGH) revealed three large deletions on chromosomes (Chrs) 10, 13, and 16 in the mutant, which were confirmed through whole genome sequencing (WGS). A bi-parental population derived from the mutant G15FN-54 and the cultivar Benning was developed to conduct a bulked segregant analysis (BSA) with SoySNP50K BeadChips, revealing that the deletion on Chr 16 might be responsible for the altered phenotype. The mapping result using the bi-parental population confirmed that the deletion on Chr 16 conferred elevated sucrose content and a total of 21 genes are located within this Chr 16 deletion. NIR and high-pressure liquid chromatography (HPLC) were used to confirm the stability of the phenotype across generations in the bi-parental population. The mutation will be useful to understand the genetic control of soybean seed sucrose content.


Assuntos
Glycine max , Sacarose , Humanos , Glycine max/genética , Hibridização Genômica Comparativa , Cromossomos Humanos Par 16/química , Proteínas de Plantas/genética , Melhoramento Vegetal , Fenótipo , Deleção Cromossômica
5.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936315

RESUMO

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Assuntos
Passeriformes , Animais , Austrália , Biodiversidade , Evolução Biológica , Fósseis , Nova Zelândia , Passeriformes/classificação , Passeriformes/genética , Passeriformes/fisiologia , Filogenia
6.
Arch Environ Contam Toxicol ; 83(1): 13-20, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699748

RESUMO

Total mercury (THg) concentrations were measured in wild alligators inhabiting a coastal marsh in southern Louisiana, to determine the tissue distribution of THg among various body organs and tissue compartments. Concentrations of THg in claws and dermal tail scutes were compared to those in blood, brain, gonad, heart, kidney, liver, and skeletal muscle to determine if the former tissues, commonly available by non-lethal sampling, could be used as measures of body burdens in various internal organs. Mercury was found in all body organs and tissue compartments. However, overall, THg concentrations measured in alligators were below the FDA action level for fish consumption and were comparable to previous data reported from southwestern Louisiana. Our results suggest consumption of meat from alligators found in this region may be of little public health concern. However, the extended period of time between sampling (in this study) and the present-day highlight the need for continuous, additional, and more recent sampling to ensure consumer safety. Total mercury concentrations were highest in the kidney (3.18 ± 0.69 mg/kg dw) and liver (3.12 ± 0.76 mg/kg dw). THg levels in non-lethal samples (blood, claws, and dermal tail scutes) were positively correlated with all tissue THg concentrations (blood: R2 = 0.513-0.988; claw: R2 = 0.347-0.637, scutes: R2 = 0.333-0.649). Because THg concentrations from blood, claws, and scutes were correlated with those of the internal organs, non-lethal sampling methods may be a viable method of estimating levels of THg in other body tissues.


Assuntos
Jacarés e Crocodilos , Mercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Louisiana , Mercúrio/análise , Distribuição Tecidual , Poluentes Químicos da Água/análise , Áreas Alagadas
7.
Environ Microbiol ; 23(12): 7523-7537, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519156

RESUMO

Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost-effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom-made resistance mock community and complex environmental samples to increase the proportion of on-target reads as much as >200-fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both in silico and in vitro) to utilization and forecasting updates and retirement.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
8.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33097499

RESUMO

A reliable and standardized classification of Listeria monocytogenes is important for accurate strain identification during outbreak investigations. Current whole-genome sequencing (WGS)-based approaches for strain characterization are either difficult to standardize, rendering them less suitable for data exchange, or are not freely available. Thus, we developed a portable and open-source tool, Haplo-ST, to improve standardization and provide maximum discriminatory potential to WGS data tied to a multilocus sequence typing (MLST) framework. Haplo-ST performs whole-genome MLST (wgMLST) for L. monocytogenes while allowing for data exchangeability worldwide. This tool takes in (i) raw WGS reads as input, (ii) cleans the raw data according to user-specified parameters, (iii) assembles genes across loci by mapping to genes from reference strains, and (iv) assigns allelic profiles to assembled genes and provides a wgMLST subtyping for each isolate. Data exchangeability relies on the tool assigning allelic profiles based on a centralized nomenclature defined by the widely used BIGSdb-Lm database. Tests of Haplo-ST's performance with simulated reads from L. monocytogenes reference strains demonstrated high sensitivity (97.5%), and coverage depths of ≥20× were found to be sufficient for wgMLST profiling. We then used Haplo-ST to characterize and differentiate between two groups of L. monocytogenes isolates derived from the natural environment and poultry processing plants. Phylogenetic reconstruction identified lineages within each group, and no lineage specificity was observed with isolate phenotypes (transient versus persistent) or origins. Genetic differentiation analyses between isolate groups identified 21 significantly differentiated loci, potentially enriched for adaptation and persistence of L. monocytogenes within poultry processing plants.IMPORTANCE We have developed an open-source tool (https://github.com/swarnalilouha/Haplo-ST) that provides allele-based subtyping of L. monocytogenes isolates at the whole-genome level. Along with allelic profiles, this tool also generates allele sequences and identifies paralogs, which is useful for phylogenetic tree reconstruction and deciphering relationships between closely related isolates. More broadly, Haplo-ST is flexible and can be adapted to characterize the genome of any haploid organism simply by installing an organism-specific gene database. Haplo-ST also allows for scalable subtyping of isolates; fewer reference genes can be used for low-resolution typing, whereas higher resolution can be achieved by increasing the number of genes used in the analysis. Our tool enabled clustering of L. monocytogenes isolates into lineages and detection of potential loci for adaptation and persistence in food processing environments. Findings from these analyses highlight the effectiveness of Haplo-ST in subtyping and evaluating relationships among isolates in studies of bacterial population genetics.


Assuntos
Microbiologia Ambiental , Variação Genética , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma , Matadouros , Animais , Aves Domésticas
9.
Mol Ecol ; 29(18): 3526-3542, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32745340

RESUMO

Determining how genetic diversity is structured between populations that span the divergence continuum from populations to biological species is key to understanding the generation and maintenance of biodiversity. We investigated genetic divergence and gene flow in eight lineages of birds with a trans-Beringian distribution, where Asian and North American populations have likely been split and reunited through multiple Pleistocene glacial cycles. Our study transects the speciation process, including eight pairwise comparisons in three orders (ducks, shorebirds and passerines) at population, subspecies and species levels. Using ultraconserved elements (UCEs), we found that these lineages represent conditions from slightly differentiated populations to full biological species. Although allopatric speciation is considered the predominant mode of divergence in birds, all of our best divergence models included gene flow, supporting speciation with gene flow as the predominant mode in Beringia. In our eight lineages, three were best described by a split-migration model (divergence with gene flow), three best fit a secondary contact scenario (isolation followed by gene flow), and two showed support for both models. The lineages were not evenly distributed across a divergence space defined by gene flow (M) and differentiation (FST ), instead forming two discontinuous groups: one with relatively shallow divergence, no fixed single nucleotide polymorphisms (SNPs), and high rates of gene flow between populations; and the second with relatively deeply divergent lineages, multiple fixed SNPs, and low gene flow. Our results highlight the important role that gene flow plays in avian divergence in Beringia.


Assuntos
Fluxo Gênico , Especiação Genética , Biodiversidade , Deriva Genética , Filogenia , Análise de Sequência de DNA
10.
Anal Biochem ; 602: 113781, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485163

RESUMO

MicroRNAs (miRNAs) are 18-24 nucleotide regulatory RNAs. They are involved in the regulation of genetic and biological pathways through post transcriptional gene silencing and/or translational repression. Data suggests a slow evolutionary rate for the saltwater crocodile (Crocodylus porosus) over the past several million years when compared to birds, the closest extant relatives of crocodilians. Understanding gene regulation in the saltwater crocodile in the context of relatively slow genomic change thus holds potential for the investigation of genomics, evolution, and adaptation. Utilizing eleven tissue types and sixteen small RNA libraries, we report 644 miRNAs in the saltwater crocodile with >78% of miRNAs being novel to crocodilians. We also identified potential targets for the miRNAs and analyzed the relationship of the miRNA repertoire to transposable elements (TEs). Results suggest an increased association of DNA transposons with miRNAs when compared to retrotransposons. This work reports the first comprehensive analysis of miRNAs in Crocodylus porosus and addresses the potential impacts of miRNAs in regulating the genome in the saltwater crocodile. In addition, the data suggests a supporting role of TEs as a source for miRNAs, adding to the increasing evidence that TEs play a significant role in the evolution of gene regulation.


Assuntos
Elementos de DNA Transponíveis/genética , MicroRNAs/genética , Jacarés e Crocodilos , Animais , Biblioteca Gênica , Salinidade
11.
Nature ; 515(7527): 406-9, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25209666

RESUMO

Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.


Assuntos
Aves/classificação , Aves/genética , Especiação Genética , Filogenia , Floresta Úmida , Clima Tropical , Animais , Biodiversidade , Modelos Biológicos , Dados de Sequência Molecular , Panamá , Rios , América do Sul
12.
Bull Environ Contam Toxicol ; 105(3): 381-386, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32794125

RESUMO

Selenium represents an essential trace nutrient that is necessary for biological functions. Deficiencies can induce disease, but excess can induce toxicity. Selenium deficiency is a major concern in underdeveloped countries, while also posing as a toxic pollutant in waterways surrounding landfills, agricultural areas, and fossil fuel production sites. We examined the microbiome of selenomethionine (SeMet) fed American alligators (Alligator mississippiensis) at the beginning and end of a 7-week exposure experiment. Alligators were randomly divided into three groups: control and 1000 or 2000 ppm SeMet. DNA from before exposure (oral and cloaca swabs) and post-exposure (oral, cloaca, small & large intestines) sampling were extracted and amplified for bacterial 16 s rRNA. While treatment did not seem to have much effect, we observed a predominance of Fusobacteriaceae and Porpyromonodaceae across all tissue types. Cetobacterium and Clostridium are the most abundant genera as potential indicators of the aquatic and carrion feeding lifestyle of alligators.


Assuntos
Jacarés e Crocodilos/microbiologia , Exposição Dietética , Poluentes Ambientais/toxicidade , Microbiota , Selenometionina/toxicidade , Animais , Antioxidantes , Selênio , Oligoelementos
13.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31471306

RESUMO

The chicken gastrointestinal tract harbors microorganisms that play a role in the health and disease status of the host. The cecum is the part of the gut that carries the highest microbial densities, has the longest residence time of digesta, and is a vital site for urea recycling and water regulation. Therefore, the cecum provides a rich environment for bacteria to horizontally transfer genes between one another via mobile genetic elements such as plasmids and bacteriophages. In this study, we used broiler chicken cecum as a model to investigate antibiotic resistance genes that can be transferred in vitro from cecal flora to Salmonella enterica serovar Heidelberg. We used whole-genome sequencing and resistome enrichment to decipher the interactions between S Heidelberg, the gut microbiome, and acquired antibiotic resistance. After 48 h of incubation of ceca under microaerophilic conditions, we recovered one S Heidelberg isolate with an acquired IncK2 plasmid (88 kb) carrying an extended-spectrum-ß-lactamase gene (blaCMY-2). In vitro, this plasmid was transferable between Escherichia coli and S Heidelberg strains but transfer was unsuccessful between S Heidelberg strains. An in-depth genetic characterization of transferred plasmids suggests that they share significant homology with P1-like phages. This study contributes to our understanding of horizontal gene transfer between an important foodborne pathogen and the chicken gut microbiome.IMPORTANCES. Heidelberg is a clinically important serovar, linked to foodborne illness and among the top 5 serovars isolated from poultry in the United States and Canada. Acquisition of new genetic material from the microbial flora in the gastrointestinal tract of food animals, including broilers, may contribute to increased fitness of pathogens like S. Heidelberg and may increase their level of antibiotic tolerance. Therefore, it is critical to gain a better understanding of the interactions that occur between important pathogens and the commensals present in the animal gut and other agroecosystems. In this report, we show that the native flora in broiler ceca were capable of transferring mobile genetic elements carrying the AmpC ß-lactamase (blaCMY-2) gene to an important foodborne pathogen, S Heidelberg. The potential role for bacteriophage transduction is also discussed.


Assuntos
Ceco/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Microbioma Gastrointestinal , Técnicas de Transferência de Genes , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Galinhas/microbiologia , Sequências Repetitivas Dispersas , Plasmídeos/genética , Salmonella enterica/efeitos dos fármacos , Sorogrupo , Sequenciamento Completo do Genoma , beta-Lactamases/genética
14.
Mol Ecol ; 28(4): 761-771, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30578692

RESUMO

Speciation is the result of an accumulation of reproductive barriers between populations, but pinpointing the factors involved is often difficult. However, hybrid zones can form when these barriers are not complete, especially when lineages come into contact in intermediate or modified habitats. We examine a hybrid zone between two closely related riverine turtle species, Sternotherus depressus and S. peltifer, and use dual-digest RAD sequencing to understand how this hybrid zone formed and elucidate genomic patterns of reproductive isolation. First, the geographical extent and timing of formation of the hybrid zone is established to provide context for understanding the role of extrinsic and intrinsic reproductive isolating mechanisms in this system. The strength of selection on taxon-specific contributions to maintenance of the hybrid zone is then inferred using a Bayesian genomic cline model. These analyses identify a role for selection inhibiting introgression in some genomic regions at one end of the hybrid zone and promoting introgression in many loci at the other. When selective pressures necessary to generate outliers to the genomic cline are considered with the geographical and temporal context of this hybrid zone, we conclude that habitat-specific selection probably limits introgression from S. depressus to S. peltifer in the direction of river flow. However, selection is mediating rapid, unidirectional introgression from S. peltifer to S. depressus, which is probably facilitated by anthropogenic habitat alteration. These findings indicate a potentially imminent threat of population-level genomic extinction for an already imperiled species due to ongoing human-caused habitat alteration.


Assuntos
Tartarugas/fisiologia , Animais , Antropologia , Teorema de Bayes , Ecossistema , Genômica , Humanos , Reprodução/fisiologia , Tartarugas/genética
15.
Mol Phylogenet Evol ; 130: 297-303, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359745

RESUMO

Target enrichment of conserved genomic regions facilitates collecting sequences of many orthologous loci from non-model organisms to address phylogenetic, phylogeographic, population genetic, and molecular evolution questions. Bait sets for sequence capture can simultaneously target thousands of loci, which opens new avenues of research on speciose groups. Current phylogenetic hypotheses on the >103,000 species of Hemiptera have failed to unambiguously resolve major nodes, suggesting that alternative datasets and more thorough taxon sampling may be required to resolve relationships. We use a recently designed ultraconserved element (UCE) bait set for Hemiptera, with a focus on the suborder Heteroptera, or the true bugs, to test previously proposed relationships. We present newly generated UCE data for 36 samples representing three suborders, all seven heteropteran infraorders, 23 families, and 34 genera of Hemiptera and one thysanopteran outgroup. To improve taxon sampling, we also mined additional UCE loci in silico from published hemipteran genomic and transcriptomic data. We obtained 2271 UCE loci for newly sequenced hemipteran taxa, ranging from 265 to 1696 (average 904) per sample. These were similar in number to the data mined from transcriptomes and genomes, but with fewer loci overall. The amount of missing data correlates with greater phylogenetic divergence from taxa used to design the baits. This bait set hybridizes to a wide range of hemipteran taxa and specimens of varying quality, including dried specimens as old as 1973. Our estimated phylogeny yielded topologies consistent with other studies for most nodes and was strongly-supported. We also demonstrate that UCE loci are almost exclusively from the transcribed portion of the genome, thus data can be successfully integrated with existing genomic and transcriptomic resources for more comprehensive phylogenetic sampling, an important feature in the era of phylogenomics. UCE approaches can be used by other researchers for additional studies on hemipteran evolution and other research that requires well resolved phylogenies.


Assuntos
Sequência Conservada/genética , Genômica/métodos , Hemípteros/classificação , Hemípteros/genética , Filogenia , Animais , Loci Gênicos , Funções Verossimilhança , Análise de Sequência de DNA , Transcriptoma/genética
16.
Theor Appl Genet ; 132(11): 2965-2983, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31324928

RESUMO

KEY MESSAGE: Protein content of soybean is critical for utility of soybean meal. A fast-neutron-induced deletion on chromosome 12 was found to be associated with increased protein content. Soybean seed composition affects the utility of soybean, and improving seed composition is an essential breeding goal. Fast neutron radiation introduces genomic mutations resulting in novel variation for traits of interest. Two elite soybean lines were irradiated with fast neutrons and screened for altered seed composition. Twenty-three lines with altered protein, oil, or sucrose content were selected based on near-infrared spectroscopy data from five environments and yield tested at five locations. Mutants with significantly increased protein averaged 19.1-36.8 g kg-1 more protein than the parents across 10 environments. Comparative genomic hybridization (CGH) identified putative mutations in a mutant, G15FN-12, that has 36.8 g kg-1 higher protein than the parent genotype, and whole genome sequencing (WGS) of the mutant has confirmed these mutations. An F2:3 population was developed from G15FN-12 to determine association between genomic changes and increased protein content. Bulked segregant analysis of the population using the SoySNP50K BeadChip identified a CGH- and WGS-confirmed deletion on chromosome 12 to be responsible for elevated protein content. The population was genotyped using a KASP marker designed at the mutation region, and significant association (P < 0.0001) between the deletion on chromosome 12 and elevated protein content was observed and confirmed in the F3:4 generation. The F2 segregants homozygous for the deletion averaged 27 g kg-1 higher seed protein and 8 g kg-1 lower oil than homozygous wild-type segregants. Mutants with altered seed composition are a new resource for gene function studies and provide elite materials for genetic improvement of seed composition.


Assuntos
Glycine max/química , Proteínas de Plantas/análise , Sementes/química , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Nêutrons Rápidos , Genótipo , Mutagênese , Proteínas de Plantas/genética , Sementes/genética , Análise de Sequência de DNA , Deleção de Sequência , Glycine max/genética
17.
Syst Biol ; 67(2): 236-249, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945862

RESUMO

The rapid diversification of Myotis bats into more than 100 species is one of the most extensive mammalian radiations available for study. Efforts to understand relationships within Myotis have primarily utilized mitochondrial markers and trees inferred from nuclear markers lacked resolution. Our current understanding of relationships within Myotis is therefore biased towards a set of phylogenetic markers that may not reflect the history of the nuclear genome. To resolve this, we sequenced the full mitochondrial genomes of 37 representative Myotis, primarily from the New World, in conjunction with targeted sequencing of 3648 ultraconserved elements (UCEs). We inferred the phylogeny and explored the effects of concatenation and summary phylogenetic methods, as well as combinations of markers based on informativeness or levels of missing data, on our results. Of the 294 phylogenies generated from the nuclear UCE data, all are significantly different from phylogenies inferred using mitochondrial genomes. Even within the nuclear data, quartet frequencies indicate that around half of all UCE loci conflict with the estimated species tree. Several factors can drive such conflict, including incomplete lineage sorting, introgressive hybridization, or even phylogenetic error. Despite the degree of discordance between nuclear UCE loci and the mitochondrial genome and among UCE loci themselves, the most common nuclear topology is recovered in one quarter of all analyses with strong nodal support. Based on these results, we re-examine the evolutionary history of Myotis to better understand the phenomena driving their unique nuclear, mitochondrial, and biogeographic histories.


Assuntos
Quirópteros/classificação , Quirópteros/genética , Genoma Mitocondrial/genética , Genoma/genética , Filogenia , Animais
18.
Arch Environ Contam Toxicol ; 77(1): 14-21, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30976886

RESUMO

Environmental contaminants, such as the trace element selenium (Se), are a continuing concern to species worldwide due to their potential pathophysiological effects, including their influence on the stress response mediated through glucocorticoids (GCs; stress hormones). Environmental concentrations of Se are increasing due to anthropogenic activities, including the incomplete combustion of coal and subsequent disposal of coal combustion wastes. However, most studies examining how Se affects GCs have been focused on lower trophic organisms. The objectives of this study were to investigate the effects of long-term Se exposure on traditionally used stress parameters and to identify which of these parameters best indicate Se accumulation in liver and kidney of the American alligator (Alligator mississippiensis), a top trophic carnivore found in the southeastern United States and known to inhabit Se-containing areas. Alligators were divided into three dietary treatments and fed prey spiked with 1000 or 2000 ppm of selenomethionine (SeMet) or deionized water (control treatment) for 7 weeks. Following the 7-week treatment protocol, blood and tissue samples were obtained to measure plasma corticosterone (CORT; the main crocodilian GC), tail scute CORT, the ratio of peripheral blood heterophils (H) to lymphocytes (L) as H/L ratio, and body condition. To evaluate which parameter best indicated Se accumulation in the liver and kidney, principal component and discriminant analyses were performed. The only parameter significantly correlated with liver and kidney Se concentrations was scute CORT. Our results suggest that measurement of CORT in tail scutes compared with plasma CORT, H/L ratios, and body condition is the best indicator of Se-exposure and accumulation in crocodilians.


Assuntos
Jacarés e Crocodilos/fisiologia , Poluentes Ambientais/toxicidade , Selênio/toxicidade , Animais , Corticosterona/análise , Corticosterona/sangue , Rim/metabolismo , Fígado/metabolismo , Selênio/farmacocinética , Selenometionina/toxicidade
19.
Mol Phylogenet Evol ; 120: 1-15, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158032

RESUMO

Accurate and consistent delimitation of species and their relationships provides a necessary framework for comparative studies, understanding evolutionary relationships, and informing conservation management. Despite the ever-increasing availability of genomic data, evolutionary dynamics can still render some relationships exceedingly difficult to resolve, including underlying speciation events that are rapid, recent, or confounded by post-speciation introgression. Here we present an empirical study of musk turtles (Sternotherus), which illustrates approaches to resolve difficult nodes in the Tree of Life that robust species-tree methods fail to resolve. We sequence 4430 RAD-loci from 205 individuals. Independent coalescent-based analyses, corroborated with morphology and geography, strongly support the recognition of cryptic species within Sternotherus, but with conflicting or weak support for some intraspecific relationships. To resolve species-tree conflict, we use a likelihood-based approach to test support for alternative demographic models behind alternative speciation scenarios and argue that demographic model testing has an important role for resolving systematic relationships in recent, rapid radiations. Species-tree and demographic modeling strongly support the elevation of two nominal subspecies in Sternotherus to species and the recognition of a previously cryptic species (S. intermedius sp. nov.) described within. The evolutionary and taxonomic history of Sternotherus is discussed in the context of these new species and novel and well-supported systematic hypotheses.


Assuntos
Biodiversidade , Filogenia , Tartarugas/anatomia & histologia , Animais , DNA Mitocondrial/genética , Demografia , Especiação Genética , Genoma , Geografia , Funções Verossimilhança , Modelos Biológicos , Especificidade da Espécie , Tartarugas/genética
20.
Mol Biol Rep ; 45(6): 2815-2819, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30232780

RESUMO

The Great-billed Seed-finch, Sporophila maximiliani, is a threatened neotropical bird that has declined mainly due to illegal trapping, with very few records in the wild in the last two decades. Despite the existence of a considerable captive population that could be used for reintroductions into the wild, many individuals are known to be hybrids either with other species or subspecies of the genus. Forensic investigations are urgently needed to distinguish between birds born in captivity from those from illegal trade. Microsatellites can be useful tools to assess individual admixture levels and to perform parentage tests that may confirm the origin of animals, but only a few loci are available for this group of birds. Here, we provide a set of 14 microsatellite loci isolated from the S. maximiliani, many of which also amplified and were polymorphic in the Pearly-bellied Seedeater, S. pileata, and in the Copper Seedeater, S. bouvreuil. In ten loci selected for the S. maximiliani, the number of alleles per locus varied from four to nine and observed and expected heterozygosities ranged from 0.13 to 1 and 0.56 to 0.83, respectively. These loci proved to be highly informative for forensic analyses, indicating that they may be useful for conservation management plans in these endangered tropical birds.


Assuntos
Tentilhões/genética , Repetições de Microssatélites/genética , Alelos , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Loci Gênicos/genética , Heterozigoto , Passeriformes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA