Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(10): 1236-1242, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652991

RESUMO

Liquids confined down to the atomic scale can show radically new properties. However, only indirect and ensemble measurements operate in such extreme confinement, calling for novel optical approaches that enable direct imaging at the molecular level. Here we harness fluorescence originating from single-photon emitters at the surface of hexagonal boron nitride for molecular imaging and sensing in nanometrically confined liquids. The emission originates from the chemisorption of organic solvent molecules onto native surface defects, revealing single-molecule dynamics at the interface through the spatially correlated activation of neighbouring defects. Emitter spectra further offer a direct readout of the local dielectric properties, unveiling increasing dielectric order under nanometre-scale confinement. Liquid-activated native hexagonal boron nitride defects bridge the gap between solid-state nanophotonics and nanofluidics, opening new avenues for nanoscale sensing and optofluidics.

2.
Nano Lett ; 19(4): 2516-2523, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30865468

RESUMO

Point defects can have significant impact on the mechanical, electronic, and optical properties of materials. The development of robust, multidimensional, high-throughput, and large-scale characterization techniques of defects is thus crucial for the establishment of integrated nanophotonic technologies and material growth optimization. Here, we demonstrate the potential of wide-field spectral single-molecule localization microscopy (SMLM) for the determination of ensemble spectral properties as well as the characterization of spatial, spectral, and temporal dynamics of single defects in chemical vapor deposition (CVD)-grown and irradiated exfoliated hexagonal boron-nitride materials. We characterize the heterogeneous spectral response of our samples and identify at least two types of defects in CVD-grown materials, while irradiated exfoliated flakes show predominantly only one type of defects. We analyze the blinking kinetics and spectral emission for each type of defects and discuss their implications with respect to the observed spectral heterogeneity of our samples. Our study shows the potential of wide-field spectral SMLM techniques in material science and paves the way toward the quantitative multidimensional mapping of defect properties.

3.
Nano Lett ; 19(8): 5417-5422, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31264881

RESUMO

Fluorescent nanoparticles with optically robust luminescence are imperative to applications in imaging and labeling. Here we demonstrate that hexagonal boron nitride (hBN) nanoparticles can be reliably produced using a scalable cryogenic exfoliation technique with sizes below 10 nm. The particles exhibit bright fluorescence generated by color centers that act as atomic-size quantum emitters. We analyze their optical properties, including emission wavelength, photon-statistics, and photodynamics, and show that they are suitable for far-field super-resolution fluorescence nanoscopy. Our results provide a foundation for exploration of hBN nanoparticles as candidates for bioimaging, labeling, as well as biomarkers that are suitable for quantum sensing.


Assuntos
Compostos de Boro/química , Nanopartículas/química , Temperatura Baixa , Fluorescência , Corantes Fluorescentes/química , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
4.
Chimia (Aarau) ; 73(1): 73-77, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814003

RESUMO

Temperature is a widely known phenomenon, which plays an extremely important role in biological systems. Its behavior on the macro-scale has been quite well investigated and understood, thanks to the availability of reliable and precise thermometers such as thermocouples and infrared cameras. However, temperature measurements on the subcellular scale present an ongoing challenge due to the absence of universal nanoscale temperature sensors. Recent work on fluorescent nanodiamonds has revealed their unique ability to measure temperature with high spatial and temporal resolution, of particular importance in the intracellular environment. This review summarizes recent progress in the field and highlights the future directions for intracellular temperature sensing using fluorescent nanodiamonds.


Assuntos
Nanodiamantes , Corantes , Temperatura , Termômetros
5.
Sci Rep ; 13(1): 8546, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236978

RESUMO

We report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser. Furthermore, the temperature of such a local heater is tracked by the spectral shift of the zero-phonon line of SiV centers. Thus, the diamond particle acts simultaneously as a heater and a thermometer. In the current work, we demonstrate the ability of such a Diamond Heater-Thermometer (DHT) to locally alter the temperature, one of the numerous parameters that play a decisive role for the living organisms at the nanoscale. In particular, we show that the local heating of 11-12 °C relative to the ambient temperature (22 °C) next to individual HeLa cells and neurons, isolated from the mouse hippocampus, leads to a change in the intracellular distribution of the concentration of free calcium ions. For individual HeLa cells, a long-term (about 30 s) increase in the integral intensity of Fluo-4 NW fluorescence by about three times is observed, which characterizes an increase in the [Ca2+]cyt concentration of free calcium in the cytoplasm. Heating near mouse hippocampal neurons also caused a calcium surge-an increase in the intensity of Fluo-4 NW fluorescence by 30% and a duration of ~ 0.4 ms.


Assuntos
Diamante , Termômetros , Humanos , Animais , Camundongos , Diamante/química , Células HeLa , Cálcio
6.
ACS Appl Mater Interfaces ; 15(27): 33056-33064, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37385597

RESUMO

While interference colors have been known for a long time, conventional color filters have large spatial dimensions and cannot be used to create compact pixelized color pictures. Here we report a simple yet elegant interference-based method of creating microscopic structural color pixels using a single-mask process using standard UV photolithography on an all-dielectric substrate. The technology makes use of the varied aperture-controlled physical deposition rate of low-temperature silicon dioxide inside a hollow cavity to create a thin-film stack with the controlled bottom layer thickness. The stack defines which wavelengths of the reflected light interfere constructively, and thus the cavities act as micrometer-scale pixels of a predefined color. Combinations of such pixels produce vibrant colorful pictures visible to the naked eye. Being fully CMOS-compatible, wafer-scale, and not requiring costly electron-beam lithography, such a method paves the way toward large scale applications of structural colors in commercial products.

7.
ACS Nano ; 16(3): 3695-3703, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35254820

RESUMO

Hexagonal boron nitride (hBN) has emerged as a promising material platform for nanophotonics and quantum sensing, hosting optically active defects with exceptional properties such as high brightness and large spectral tuning. However, precise control over deterministic spatial positioning of emitters in hBN remained elusive for a long time, limiting their proper correlative characterization and applications in hybrid devices. Recently, focused ion beam (FIB) systems proved to be useful to engineer several types of spatially defined emitters with various structural and photophysical properties. Here we systematically explore the physical processes leading to the creation of optically active defects in hBN using FIB and find that beam-substrate interaction plays a key role in the formation of defects. These findings are confirmed using transmission electron microscopy, which reveals local mechanical deterioration of the hBN layers and local amorphization of ion beam irradiated hBN. Additionally, we show that, upon exposure to water, amorphized hBN undergoes a structural and optical transition between two defect types with distinctive emission properties. Moreover, using super-resolution optical microscopy combined with atomic force microscopy, we pinpoint the exact location of emitters within the defect sites, confirming the role of defected edges as primary sources of fluorescent emission. This lays the foundation for FIB-assisted engineering of optically active defects in hBN with high spatial and spectral control for applications ranging from integrated photonics, to nanoscale sensing, and to nanofluidics.

8.
Sci Adv ; 7(40): eabg8568, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586851

RESUMO

Our understanding of the dynamics of charge transfer between solid surfaces and liquid electrolytes has been hampered by the difficulties in obtaining interface, charge, and solvent-specific information at both high spatial and temporal resolution. Here, we measure at the single charge scale the dynamics of protons at the interface between an hBN crystal and binary mixtures of water and organic amphiphilic solvents (alcohols and acetone), evidencing a marked influence of solvation on interfacial dynamics. Applying single-molecule localization microscopy to emissive crystal defects, we observe correlated activation between adjacent ionizable surface defects, mediated by the transport of single excess protons along the solid/liquid interface. Solvent content has a nontrivial effect on interfacial dynamics, leading at intermediate water fraction to an increased surface diffusivity, as well as an increased affinity of the proton charges to the solid surface. Our measurements evidence the notable role of solvation on interfacial proton charge transport.

9.
Nat Nanotechnol ; 15(7): 598-604, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451503

RESUMO

Aqueous proton transport at interfaces is ubiquitous and crucial for a number of fields, ranging from cellular transport and signalling, to catalysis and membrane science. However, due to their light mass, small size and high chemical reactivity, uncovering the surface transport of single protons at room temperature and in an aqueous environment has so far remained out-of-reach of conventional atomic-scale surface science techniques, such as scanning tunnelling microscopy. Here, we use single-molecule localization microscopy to resolve optically the transport of individual excess protons at the interface of hexagonal boron nitride crystals and aqueous solutions at room temperature. Single excess proton trajectories are revealed by the successive protonation and activation of optically active defects at the surface of the crystal. Our observations demonstrate, at the single-molecule scale, that the solid/water interface provides a preferential pathway for lateral proton transport, with broad implications for molecular charge transport at liquid interfaces.


Assuntos
Compostos de Boro/química , Prótons , Água/química , Luminescência , Propriedades de Superfície
10.
Nat Commun ; 10(1): 1267, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894525

RESUMO

Super-resolution microscopies based on the localization of single molecules have been widely adopted due to their demonstrated performance and their accessibility resulting from open software and simple hardware. The PAINT method for localization microscopy offers improved resolution over photoswitching methods, since it is less prone to sparse sampling of structures and provides higher localization precision. Here, we show that waveguides enable increased throughput and data quality for PAINT, by generating a highly uniform ~100 × 2000 µm2 area evanescent field for TIRF illumination. To achieve this, we designed and fabricated waveguides optimized for efficient light coupling and propagation, incorporating a carefully engineered input facet and taper. We also developed a stable, low-cost microscope and 3D-printable waveguide chip holder for easy alignment and imaging. We demonstrate the capabilities of our open platform by using DNA-PAINT to image multiple whole cells or hundreds of origami structures in a single field of view.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA