Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 126(3): 946-956, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406893

RESUMO

The cause for the increased sensitivity of patients with fibromyalgia (FM) to painful stimuli is unclear but sensitization of dorsal horn spinal cord neurons has been suggested. There, critical changes of sensory information occur which depend on the plasticity of second-order neurons and descending pain modulation, including facilitation and inhibition. This study used repetitive stimuli that produce temporal-summation-of-second-pain (TSSP) and central sensitization, relevant mechanisms for patients with chronic pain. We examined spinal cord neural activation during TSSP in patients with FM and healthy controls (HC) and used its functional connectivity with several brainstem nuclei to model the observed blood-oxygen-level-dependent (BOLD) time-course with pain ratings. Sixteen HC and 14 FM participants received repetitive heat stimuli to the hand at 0.4 Hz to achieve TSSP during functional imaging with a 3 T-Philips Achieva MRI scanner. Stimuli were adjusted to each individual's pain sensitivity to achieve maximal pain ratings of 50 ± 10 on a numerical pain scale (0-100). Using a 16-channel neurovascular coil, multiple image series were obtained from the cervical spinal cord to the brainstem using single-shot turbo-spin echo sequences. During repetitive, sensitivity-adjusted heat stimuli, pain ratings of all subjects increased as predicted, consistent with TSSP. HC and FM participants had similar temporal patterns of spinal activation: initial BOLD increase followed by deactivation. Structural equation modeling showed that the observed spinal activity during TSSP was associated with more BOLD activity across/within the brainstem in FM subjects than HC, suggesting differences in pain modulation.NEW & NOTEWORTHY "Windup" and its behavioral correlate "temporal-summation-of-second pain" (TSSP) represent spinal cord mechanisms of pain augmentation associated with central sensitization and chronic pain. Fibromyalgia (FM) is a chronic pain disorder, where abnormal TSSP has been demonstrated. We used fMRI to study spinal cord and brainstem activation during TSSP. We characterized the time course of spinal cord and brainstem BOLD activity during TSSP which showed abnormal brainstem activity in patients with FM, possibly due to deficient pain modulation.


Assuntos
Fibromialgia/fisiopatologia , Limiar da Dor , Medula Espinal/fisiopatologia , Adulto , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/fisiopatologia , Sensibilização do Sistema Nervoso Central , Conectoma , Feminino , Fibromialgia/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Percepção da Dor , Medula Espinal/diagnóstico por imagem
2.
Front Pain Res (Lausanne) ; 4: 1284103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116188

RESUMO

Widespread pain and hyperalgesia are characteristics of chronic musculoskeletal pain conditions, including fibromyalgia syndrome (FM). Despite mixed evidence, there is increasing consensus that these characteristics depend on abnormal pain augmentation and dysfunctional pain inhibition. Our recent investigations of pain modulation with individually adjusted nociceptive stimuli have confirmed the mechanical and thermal hyperalgesia of FM patients but failed to detect abnormalities of pain summation or descending pain inhibition. Furthermore, our functional magnetic resonance imaging evaluations of spinal and brainstem pain processing during application of sensitivity-adjusted heat stimuli demonstrated similar temporal patterns of spinal cord activation in FM and HC participants. However, detailed modeling of brainstem activation showed that BOLD activity during "pain summation" was increased in FM subjects, suggesting differences in brain stem modulation of nociceptive stimuli compared to HC. Whereas these differences in brain stem activation are likely related to the hypersensitivity of FM patients, the overall central pain modulation of FM showed no significant abnormalities. These findings suggest that FM patients are hyperalgesic but modulate nociceptive input as effectively as HC.

3.
Br J Pain ; 17(2): 182-194, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37057258

RESUMO

Background: Pain is a dynamic phenomenon dependent on the balance of endogenous excitatory and inhibitory systems, which can be characterized by quantitative sensory testing. Many previous studies of pain modulatory capacity of patients with fibromyalgia syndrome (FM) have reported decreased pain inhibition or increased pain facilitation. This is the first study to assess pain modulation, including conditioned pain modulation (CPM) and temporal pain summation, in the same healthy control (HC) and FM participants. Methods: Only sensitivity-adjusted stimuli were utilized for testing of conditioned pain modulation (CPM) and temporal pain summation in 23 FM patients and 28 HC. All subjects received sensitivity-adjusted ramp-hold (sRH) during testing of pain facilitation (temporal summation) and pain inhibition (CPM). CPM efficacy was evaluated with test stimuli applied either concurrently or after application of the conditioning stimulus. Finally, the effects of CPM on pressure pain thresholds were tested. Results: FM subjects required significantly less intense test and conditioning stimuli than HC participants to achieve standardized pain ratings of 50 ± 10 numerical rating scale (NRS) (p = 0.03). Using such stimuli, FM subjects' temporal pain summation and CPM efficacy was not significantly different from HC (all p > 0.05), suggesting similar pain facilitation and inhibition. Furthermore, the CPM efficacy of FM and HC participants was similar regardless of whether the test stimuli were applied during or after the conditioning stimulus (p > 0.05). Conclusion: Similar to previous studies, FM participants demonstrated hyperalgesia to heat, cold, and mechanical stimuli. However, using only sensitivity-adjusted stimuli during CPM and temporal summation testing, FM patients demonstrated similarly effective pain inhibition and facilitation than HC, suggesting that their pain modulation is not abnormal.

4.
J Pain ; 22(8): 914-925, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33636370

RESUMO

Fibromyalgia is a chronic widespread pain syndrome associated with hypersensitivity to nociceptive stimuli. This increased sensitivity of FM patients has been associated with central sensitization of dorsal horn neurons. Increasing evidence, however, suggests that the mechanisms of FM hypersensitivity not only affect pain but include light, smell, and sound. We hypothesized that supraspinal augmentation of sensory input including sound represent a hallmark of FM. We tested 23 FM patients and 28 healthy controls (HC) for sensory augmentation of nociceptive and non-nociceptive sensations: For assessment of nociceptive augmentation we used sensitivity adjusted mechanical and heat ramp & hold stimuli and for assessment of sound augmentation, we applied wideband noise stimuli using a random-staircase design. Quantitative sensory testing demonstrated increased heat and mechanical pain sensitivity in FM participants (P < .001). The sound pressures needed to report mild, moderate, and intense sound levels were significantly lower in FM compared to HC (P < .001), consistent with auditory augmentation. FM patients are not only augmenting noxious sensations but also sound, suggesting that FM augmentation mechanisms are not only operant in the spinal cord but also in the brain. Whether the central nervous system mechanisms for auditory and nociceptive augmentation are similar, needs to be determined in future studies. PERSPECTIVE: This study presents QST evidence that the hypersensitivity of FM patients is not limited to painful stimuli but also to innocuous stimuli like sound. Our results suggest that abnormal brain mechanisms may be responsible for the increased sensitivity of FM patients.


Assuntos
Fibromialgia/fisiopatologia , Hiperacusia/fisiopatologia , Hiperalgesia/fisiopatologia , Estimulação Acústica , Adulto , Feminino , Fibromialgia/complicações , Humanos , Hiperacusia/etiologia , Hiperalgesia/etiologia , Masculino , Pessoa de Meia-Idade
5.
J Pain ; 21(3-4): 390-398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31425887

RESUMO

Quantitative sensory testing (QST) is used to systematically interrogate normal responding and alterations of nervous system function, including pain-related central sensitization (CS). However, up to now, QST of CS in human subjects has been mostly focused on temporal summation of second pain (TSSP), has been difficult to perform, and has been associated with low reliability. In contrast, slow ramp & hold (RH) procedures are simpler tests of temporal summation and easier to perform. We examined the usefulness of RH procedures as reliable generators of CS using 2 validated QST procedures: decay of pain aftersensations and wind-down. Twenty-seven pain-free subjects (74% female) were enrolled into the study. Trains of sensitivity-adjusted TSSP or RH heat stimuli were applied to the hands of participants to achieve moderate temporal pain summation (50 Numerical Rating Scale [NRS] [0-100]). Fifteen-second aftersensations and 30-second wind-down related to TSSP or RH were used for CS comparisons. Reliability of all test procedures was tested over 24 hours. Use of sensitivity-adjusted TSSP and RH heat stimuli resulted in average pain ratings of 48.2 and 49.6 NRS, respectively. Aftersensations or wind-down decay were not significantly different after either TSSP or RH, (all P > .05), indicating that each procedure achieved similar levels of short-term CS. Sensitivity-adjusted RH stimuli were well tolerated and resulted in reliable pain increases of ∼50 NRS. The magnitude of short-term CS, determined by aftersensations and wind-down was similar after sensitivity-adjusted TSSP and RH stimuli (P > .05), suggesting that pain facilitation of healthy participants and likely chronic pain patients can not only be tested with TSSP but also with RH procedures. PERSPECTIVE: This article examines the ability of RH procedures to generate similar central sensitivity augmentation than TSSP. The results suggest that RH is similarly well suited as TSSP to explore central pain mechanisms in healthy subjects and most likely also in chronic pain patients.


Assuntos
Sensibilização do Sistema Nervoso Central , Dor Crônica/diagnóstico , Dor Nociceptiva/diagnóstico , Medição da Dor/métodos , Medição da Dor/normas , Adulto , Sensibilização do Sistema Nervoso Central/fisiologia , Feminino , Temperatura Alta , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA