Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 9(5): e97695, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24842154

RESUMO

Reporter genes inserted into viral genomes enable the easy and rapid quantification of virus replication, which is instrumental to efficient in vitro screening of antiviral compounds or in vivo analysis of viral spread and pathogenesis. Based on a published design, we have generated several replication competent influenza A viruses carrying either fluorescent proteins or Gaussia luciferase. Reporter activity could be readily quantified in infected cultures, but the virus encoding Gaussia luciferase was more stable than viruses bearing fluorescent proteins and was therefore analyzed in detail. Quantification of Gaussia luciferase activity in the supernatants of infected culture allowed the convenient and highly sensitive detection of viral spread, and enzymatic activity correlated with the number of infectious particles released from infected cells. Furthermore, the Gaussia luciferase encoding virus allowed the sensitive quantification of the antiviral activity of the neuraminidase inhibitor (NAI) zanamivir and the host cell interferon-inducible transmembrane (IFITM) proteins 1-3, which are known to inhibit influenza virus entry. Finally, the virus was used to demonstrate that influenza A virus infection is sensitive to a modulator of endosomal cholesterol, in keeping with the concept that IFITMs inhibit viral entry by altering cholesterol levels in the endosomal membrane. In sum, we report the characterization of a novel influenza A reporter virus, which allows fast and sensitive detection of viral spread and its inhibition, and we show that influenza A virus entry is sensitive to alterations of endosomal cholesterol levels.


Assuntos
Antivirais/farmacologia , Copépodes/enzimologia , Vírus da Influenza A/metabolismo , Luciferases , Proteínas/farmacologia , Replicação Viral/fisiologia , Animais , Antígenos de Diferenciação , Bioensaio/métodos , Clonagem Molecular , Copépodes/genética , Genes Reporter/genética , Genes Reporter/fisiologia , Engenharia Genética/métodos , Vetores Genéticos , Vírus da Influenza A/enzimologia , Luciferases/metabolismo , Virologia/métodos , Replicação Viral/efeitos dos fármacos , Zanamivir
2.
PLoS One ; 7(8): e43337, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952667

RESUMO

The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV) from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV) also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN) response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.


Assuntos
Antígenos CD/biossíntese , Regulação Viral da Expressão Gênica , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Vírus da Influenza A/metabolismo , Interferons/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Linhagem Celular Tumoral , Membrana Celular/virologia , Citometria de Fluxo/métodos , Proteínas Ligadas por GPI/biossíntese , Células HEK293 , HIV-1/metabolismo , Células HeLa , Humanos , Plasmídeos/metabolismo , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA